• Title/Summary/Keyword: piezoelectric transducer

Search Result 391, Processing Time 0.031 seconds

Perspective on Ferroelectric Polymers Presenting Negative Longitudinal Piezoelectric Coefficient and Morphotropic Phase Boundary (강유전체 고분자의 음의 압전 물성 및 상공존경계(MPB)에 대한 고찰)

  • Im, Sungbin;Bu, Sang Don;Jeong, Chang Kyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.523-546
    • /
    • 2022
  • Morphotropic phase boundary (MPB), which is a special boundary that separates two or multiple different phases in the phase diagram of some ferroelectric ceramics, is an important concept in identifying physics that includes piezoelectric responses. MPB, which had not been discovered in organic materials until recently, was discovered in poly(vinylidene fluoride-co-trifluoroethylene (P(VDF-TrFE)), resulting from a molecular approach. The piezoelectric coefficient of P(VDF-TrFE) in this MPB region was achieved up to -63.5 pC N-1, which is about two times as large as the conventional value of -30 pC N-1 of P(VDF-TrFE). An order-disorder arrangement greatly affects the rise of the piezoelectric effect and the ferroelectric, paraelectric and relaxor ferroelectric of P(VDF-TrFE), so the arrangement and shape of the polymer chain is important. In this review, we investigate the origin of negative longitudinal piezoelectric coefficients of piezoelectric polymers, which is definitely opposite to those of common piezoelectric ceramics. In addition to the mainly discussed issue about MPB behaviors of ferroelectric polymers, we also introduce the consideration about polymer chirality resulting in relaxor ferroelectric properties. When the physics of ferroelectric polymers is unveiled, we can improve the piezoelectric and pyroelectric properties of ferroelectric polymers and contribute to the development of next-generation sensor, energy, transducer and actuator applications.

Deformation Characteristics Analysis of 3-Unit Fixed Partial Dentures by Using Electronic Speckle Pattern Interferometry (전자처리 스페클 패턴 간섭법(ESPI)을 이용한 3-유닛 고정성 국소의치의 변형특성 분석)

  • Kang, Hoo-Won;Lee, Chul-Min;Yang, Seung-Pil;Kim, Hee-Jin
    • Journal of Technologic Dentistry
    • /
    • v.35 no.1
    • /
    • pp.49-56
    • /
    • 2013
  • Purpose: The deformation characteristics induced by non-destructive stresses using piezoelectric transducer(PZT) were analyzed for 3-unit fixed partial dentures manufactured PFM, Everest(CAD/CAM) and Zirkonzahn(copy milling, MAD/MAM) by electron speckle pattern interferometery(ESPI). Methods: The ESPI analysis after loading the restoration with PZT by applying electric voltage of 900mV at the points of 10 mm above the base of the prostheses. Results: PFM and All-Ceramic Everest prostheses showed about 0.1 ${\mu}m$ while that of All- Ceramic Zirkonzahn prostheses showed 0.085 ${\mu}m$, demonstrating that Zirkonzahn displaced less. For PFM and All-Ceramic Zirkonzahn prostheses, the displacements were large at just below the loading point, while generalize displacement was shown over the loading point and weak connector areas for All-Ceramic Everest prostheses. Conclusion: We could find that the deformation characteristics induced by non-destructive stresses using PZT analyzed by ESPI were similar to the fracture strengths evaluated using universal testing machine.

Apodization of Linearly Chirped Fiber Gratings for Dispersion Compensation (색분산 보상을 위한 선형 첩 광섬유 격자의 Apodization)

  • 박제형;최선민;한영근;김상혁;이상배
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.3
    • /
    • pp.214-221
    • /
    • 2004
  • We theoretically and experimentally investigate the effect of apodization on the transmission characteristics of linearly chirped fiber Bragg gratings(CFBGs). Based on the UV beam scanning method along a phase mask, we fabricated several apodized CFBGs with different apodization profiles such as Gaussian, Raised-cosine, Blackman, and Hyperbolic tangent. During the UV beam scanning, the phase mask is dithered by a PZT(Piezoelectric transducer) which is precisely controlled by a computer program so that the apodization profiles can be flexibly applied to the grating. We measured the reflection spectra and group delay characteristics of CFBGs with the different apodization profiles, and compared them according to their properties such as reflectivity, sidelobes, and group delay ripple (GDR). The peak-to-peak of GDR could be suppressed to less than 20 ps.

Development and Evaluation of the piezoelectric transducer for the transit-time ultrasonic flowmeters (외접형 초음파 유량센서용 압전 트랜스듀서의 개발 및 평가)

  • Lee Young-Jin;Im Jong-In
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.4 s.310
    • /
    • pp.30-34
    • /
    • 2006
  • To enhance the performance of the piezoelectric transducer for the transit-time type ultrasonic sensors, we investigated and verified the effect of it's size and raw materials using FEM(Finite Element Method) technique. Radiation angle of $25^{\circ}$ could be realized through the control of the matching layer's shape and its raw materials. Based on the results, the flowmeter is fabricated and characterized in real application, which thereby proves good sensitivity of 10 times better than current commercial one.

Study on a cavity ring-down spectrometer with continuous wave laser sources (연속발진 레이저를 이용한 공동 광자감쇠 분광기 연구)

  • 유용심;한재원;김재완;이재용;이해웅
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.4
    • /
    • pp.240-244
    • /
    • 1998
  • Cavity ring-down spectroscopy (CRDS) is a high-sensitive laser spectroscopic technique capable of measuring concentrations of trace gases. We have demonstrated a new design of the CRDS spectrometer with a continuous wave (CW) laser. The ring-dwon signal is produced through blocking the incident CW laser by scanning the cavity length fast toward off-resonance iwth PZT (piezoelectric transducer). We have also measured an absorption spectrum of acetylene overtone transitions near 570 nm at the pressure of 2700 Pa, and the minimum detectable absorption coefficient has been found to be about $3{\times}10^{-9}\cm^{-1}$.

  • PDF

PRESSURE MODULAION ON MICRO-MACHINED PORT FUEL INJECTOR PERFORMANCE

  • Kim, H.;Im, K.S.;Lai, M.C.
    • International Journal of Automotive Technology
    • /
    • v.5 no.1
    • /
    • pp.9-16
    • /
    • 2004
  • An experimental study was carried out to characterize the spray atomization process of micro-machined port fuel injectors with a piezoelectric atomization device, which can generate pressure pulsations through vibration of a piezoelectric transducer. In this study, several types of micro-machined arrays such as 30∼200-microns of hole arrays were tested. Both a dual-stream and a central-port injectors with micro-machined arrays were tested and compared with normal port fuel injectors. The spray visualization was conducted to characterize overall spray structure and phase Doppler particle analyzer (PDPA) system was used to quantify the droplet size and velocity. In addition, the pressure history was recorded by using digitized signal from pressure transducer. The results showed that modulation is effective to the spray atomization for tested injectors and atomization performance depends on injector design factors, orifice sizes, and frequency and power of the modulator. A number of resonance frequencies of the modulator was modified by injector parameters and temperature. In addition, our results suggested that design of sufficient space among holes is critical to avoid droplet coalescence in the multi-hole micro-machined injectors.

Piezoelectric properties of porous PZT ceramics for hydrophone Applications (수중청음기 응용을 위한 다공질 PZT 세라믹스의 압전특성)

  • 박정학;이수호;공사건;배진호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.558-561
    • /
    • 1996
  • PZT powders were prepared by the molten salt synthesis method. The porous PZT ceramics were made from a mixture of PZT and polyvinylalcohol(PVA) by BURPS(Burnout Plastic Sphere) technique. The porous PZT bodies were fabricated from the green compacts with various amounts of PVA spheres. The piezoelectric coefficient d$_{33}$ (334~350*10$^{-12}$ C/N)of porous PZT ceramics(364*10$^{-12}$ C/N). The figure of merit(d$_{h}$g$_{h}$) of porous PZT specimens evaluating the sensitivity for ultrasonic transducer applications was improved significantly(11~70times) in comparison with that of single phase PZT ceramics(100*10$^{-15}$ m$^{2}$/N). The thickness mode coupling factor k$_{t}$(0.5~0.6) of porous specimens was comparable with that of single phase PZT ceramics(k$_{t}$=0.7). The mechanical quality factor of porous PZT specimens was smaller than 10, and thus these porous PZT ceramics would be believed as a good candidate for broad band hydrophone applications. (author). 10 refs., 7 figs.igs.igs.

  • PDF

Detection of a Crack on a Plate by IDT Type Lamb Wave Sensors (IDT형 Lamb 파 센서에 의한 판상의 균열 검출)

  • Kim, Jun-Ho;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.8
    • /
    • pp.483-490
    • /
    • 2010
  • In this paper, an Inter-Digital Transducer (IDT) type Lamb wave sensor is proposed to estimate the geometry and number of cracks on a plate structure, and its validity is checked through experiments. This IDT type sensor is more readily controllable than conventional patch type piezoelectric sensors to modify its operation frequency and directionality by altering its finger patterns. In this work, omni-directional annular IDT and highly directional rectangular IDT sensors are designed and fabricated. The IDT sensors are used to diagnose the length, number and orientation of cracks on an aluminum plate by measuring the amplitude and time of flight of Lamb waves. The results are analyzed to discuss the efficacy of the IDT sensors.

Improved Power Output by a Piezoelectric Cantilever after Addition of a Cylindrical Bar (원통 봉을 적용한 압전 캔틸레버의 성능 향상)

  • Lee, Youngjin;Kim, Seiki;Kim, Young-Deuk
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.516-521
    • /
    • 2014
  • This paper describes the development of a new piezoelectric unimorph cantilever structure intended to improve electrical output power, compared to a conventional cantilever. The proposed structure employs a cylindrical bar attached to one side of a steel plate, which is a significant factor in forced vibration mode. The feasibility of the proposed methodology was assessed experimentally and theoretically. The influence of three different types of bar material (i.e., stainless steel, silicon rubber, and urethane), and bar position, on the output voltage were examined and compared with those without the bar. The optimal position and material for the bar were identified through experimental and theoretical analyses. It appears that the electrical output power of the proposed cantilever is about 40% higher than that of a conventional unimorph cantilever.

FUZZY POSITION/FORCE CONTROL OF MINIATURE GRIPPER DRVEN BY PIEZOELECTRIC BIMORPH ACTUATOR

  • Kim, Young-Chul;Chonan, Seiji;Jiang, Zhongwei
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.24.2-27
    • /
    • 1996
  • This paper is a study on the fuzzy force control of a miniature gripper driven by piezoelectric bimorph actuator. The system is composed of two flexible cantilevers, a stepping motor, a laser displacement transducer and two semiconductor force sensors attached to the beams. Obtained results show that the present artificial finger system works well as a miniature gripper, which produces approximately 0.06N force in the maximum. Further, the fuzzy position/force control algorithm is applied to the soft-handing gripper for stable grasping of a object. It revealed that the fuzzy rule-based controller be efficient controller for the stable drive of the flexible miniature gripper. It also showed that two semiconductor strain gauges located in the flexible beam play an important roles for force control, position control and vibration suppression control.

  • PDF