DOI QR코드

DOI QR Code

Deformation Characteristics Analysis of 3-Unit Fixed Partial Dentures by Using Electronic Speckle Pattern Interferometry

전자처리 스페클 패턴 간섭법(ESPI)을 이용한 3-유닛 고정성 국소의치의 변형특성 분석

  • Kang, Hoo-Won (Dept. of Dental Lab. Technology, Dong-A In-Jae College) ;
  • Lee, Chul-Min (Dept. of Dental Lab. Technology, Dong-A In-Jae College) ;
  • Yang, Seung-Pil (Dept. of Optometry Dong-A In-Jae College) ;
  • Kim, Hee-Jin (Dep. of Dental Lab. Science, Graduate School, Catholic University of Pusan)
  • 강후원 (동아인재대학교 치기공과) ;
  • 이철민 (동아인재대학교 치기공과) ;
  • 양승필 (동아인재대학교 안경광학과) ;
  • 김희진 (부산카톨릭대학교 치기공학과)
  • Received : 2013.01.15
  • Accepted : 2013.03.12
  • Published : 2013.03.30

Abstract

Purpose: The deformation characteristics induced by non-destructive stresses using piezoelectric transducer(PZT) were analyzed for 3-unit fixed partial dentures manufactured PFM, Everest(CAD/CAM) and Zirkonzahn(copy milling, MAD/MAM) by electron speckle pattern interferometery(ESPI). Methods: The ESPI analysis after loading the restoration with PZT by applying electric voltage of 900mV at the points of 10 mm above the base of the prostheses. Results: PFM and All-Ceramic Everest prostheses showed about 0.1 ${\mu}m$ while that of All- Ceramic Zirkonzahn prostheses showed 0.085 ${\mu}m$, demonstrating that Zirkonzahn displaced less. For PFM and All-Ceramic Zirkonzahn prostheses, the displacements were large at just below the loading point, while generalize displacement was shown over the loading point and weak connector areas for All-Ceramic Everest prostheses. Conclusion: We could find that the deformation characteristics induced by non-destructive stresses using PZT analyzed by ESPI were similar to the fracture strengths evaluated using universal testing machine.

Keywords

References

  1. Aggstaller H, Beuer F, Funk M, Erdelt KJ, Gernet W. Effect of the preparation design on the fracture resistance of zirconia crown copings. Deutsche Zahnaerztliche Zeitschrift, 61(7), 347-352, 2006.
  2. Chang JC, Hart DA, Estey AW, Chan JT. Tensile bond strengths of five luting agents to two CAD-CAM restorative materials and enamel. J Prosthet Dent, 90(1), 18-23, 2003. https://doi.org/10.1016/S0022-3913(03)00217-8
  3. Creath K. Phase-shifting speckle interferometry. Appl Opt, 24(18), 3053-3058, 1985. https://doi.org/10.1364/AO.24.003053
  4. Erdelt K, Beuer F, Weiger JS, Berger ME, Gernet W. Flexural strength of milled hite-body zirconia. Quintessenz Zahntech, 30(9), 942-954, 2004.
  5. Futoshi K, Thomas G, Siegbert W, Joerg RS. Influence of framework configuration on the marginal adaptation of zirconium dioxide ceramic anterior four-unit frameworks. Acta Odontol Scand, 63(6), 361-366, 2005. https://doi.org/10.1080/00016350500264313
  6. Hoo-Won Kang, Hee-Jin Kim, Jang-Ju Kim, Myung-Won Ko. Fracture strength of allceramic 3-unit fixed partial dentures manufactured by CAD/CAM and copy-milling system J Dent Tech, Vol.34, No.1, 2012.
  7. Ichim I, Li Q, Li W, Swain MV, Kieser J. Modelling of fracture behaviour in biomaterials. Biomater, 28(7), 1317-1326, 2007. https://doi.org/10.1016/j.biomaterials.2006.10.035
  8. Jahn F, Bode D, Goebel R, Gnauck M, Kuepper H. In vitro-investigation of CAD/CAM allceramic resin-bonded fixed partial dentures. Deutsche Zahnaerztliche Zeitschrift, 61(8), 417-421, 2006.
  9. Jones R, Wykes C. Holographic and speckle interferometry 2nd ed., Cambridge university press, London, 165-196, 1989.
  10. Kelly JR, Teskl JA, Sorensen JA. Failure of Allceramic Fixed Partial Dentures in vitro and in vivo: Analysis and Modeling. J Dent Res, 74(6), 1253-1258, 1995. https://doi.org/10.1177/00220345950740060301
  11. Oh WS, Anusavice KJ. Effect of connector design on the fracture resistance of all-ceramic fixed partial dentures. J Prosthet Dent, 87(5), 536-542, 2002. https://doi.org/10.1067/mpr.2002.123850
  12. Paul Zaslansky, Ron Shahar. Tooth and Bone Deformation: Structure and Material-Properties by ESPI. Proc. of SPIE, Vol. 6341,634109, 2006.
  13. Peter M, Klaus D. H, Rajpal S. S. Selected paper on electronic speckle pattern interferometry principles and practice. SPIE Optical Engineering press, 1996.
  14. Rosentritt M, Behr M, Kolbeck C, Handel G. Marginal adaptation and fracture resistance of all-ceramic FPDs. Deutsche Zahnaerztliche Zeitschrift, 61(7), 353-357, 2006.
  15. Thompson Y, Anusavice KJ, Naman A, Morris HF. Fracture surface characterization of clinically failed all-ceramic crowns. J Dent Res, 73, 1824-1832, 1994. https://doi.org/10.1177/00220345940730120601
  16. Tinschert J, Natt G, Mautsch W, Augthun M, Spiekermann H(2001). Fracture Resistance of Lithium Disilicate-, Alumina-, and Zirconia-Based Three-Unit Fixed Partial Dentures: A Laboratory Study. Int J Prosthodont, 14(3),231-238, 2001.
  17. Wagnr WC, Chu TM. Biaxial flexural strength and indentation fracture toughness of three new dental core ceramics. J Prosthet Dent, 76(2), 140-144, 1996. https://doi.org/10.1016/S0022-3913(96)90297-8
  18. XIE Zhongyan, ZHAO Shouliang. Application of ESPI for measuring polymerization shrinkage of light cured dental composites. J Pract Stomatol, Jul, 24(4), 2008.