• Title/Summary/Keyword: piezoelectric transducer

Search Result 391, Processing Time 0.03 seconds

Effect of a Bonding Layer between Electrodes on the Performance of a λ/4-Mode PVDF Ultrasound Transducer (λ/4 모드 PVDF 초음파 트랜스듀서에 있어서 전극 사이의 접합층이 성능에 미치는 영향)

  • Cao, Yonggang;Ha, Kanglyeol;Kim, Moojoon;Kim, Jungsoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.2
    • /
    • pp.102-110
    • /
    • 2014
  • The effect of a bonding layer on the performance of a quarter-wave (${\lambda}/4$) mode PVDF ultrasound transducer having not only a piezoelectric layer but also a non-piezoelectric layer between two electrodes was analyzed. The equivalent circuit of a transmission line model by Kikuchi et al.[Sound of IEICE, 55-A, 331-338 (1981)] was introduced for the analysis. The validity of the model was confirmed by comparison with a KLM model for three postulated adhesion cases of a $80{\mu}m$ thick piezoelectric PVDF film to a copper (Cu) backer. The pulse-echo responses of five PVDF transducers, each fabricated with a different thickness ($5{\mu}m{\sim}20{\mu}m$) of the bonding layer, were measured and the results were compared with those by simulation. The two results were in good agreement with each other and it was noted that the effect of the bonding layer on the performance of the transducer could be analyzed by the Kikuchi model. In detail, the $20{\mu}m$ bonding layer decreased the center frequency and the bandwidth by about 19.7 % and 25.0 %, respectively, and increased the insertion loss by 57.2 %.

An automatic calibration technique for piezoelectric pressure transducers (압전형 압력센서의 교정기법 자동화)

  • Hong, Sung-Soo;Choi, Ju-Ho;Yoo, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1368-1371
    • /
    • 1996
  • This paper presents an automatic calibration technique for piezoelectric low pressure transducer, which is useful to measure a pressure within 500 psi. This system with automatic calibration function and error correction algorithm generates standard dynamic pressure for the calibration of sensor. With the compensation for the offset voltage and the pressure error, the accuracy and the usefulness of the proposed scheme is validated.

  • PDF

Dielectric and Piezoelectric Properties of PZT/polymer Composites toes for Ultrasonic Transducer Applications (초음파 변환기용 PZT/고분자 복합 압전체의 유전 및 압전 특성)

  • 박정학;최헌일;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.13-16
    • /
    • 1994
  • The porous PZT was prepared from a mixture of PZT and polyvinylalcohol (PVA ) powders by BURPS( Burnedout Plastic Sphere) technique. The dielectric and piezoelectric properties of piezoceramic/polymer composites dependent on the PVA wt. % were evaluated. The density of PZT/polymer 3-3 composites were decreased almost linearly with increasing the PVA wt. %.

  • PDF

Acoustic field simulation of a PZT4 disc projector using a coupled FE-BE method

  • Jarng, S.S.
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.211-218
    • /
    • 1999
  • This paper describes the application of a coupled finite element-boundary element method (FE-BEM) to obtain the steady-state response of a piezoelectric transducer. The particular structure considered is a PZT4 disc-typed projector. The projector is three-dimensionally simulated to transduce applied electric charge on axial surfaces of the piezoelectric disc to acoustic pressure in air or in water. The directivity pattern of the acoustic field formed from the projected sound pressure is also simulated. And the displacement of the disc caused by the externally applied electric charge is shown in temporal motion. The coupled FE-BE method is described in detail.

  • PDF

The study on piezoelectric transducers: theoretical analysis and experimental verification

  • Sung, Chia-Chung;Tien, Szu-Chi
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1063-1083
    • /
    • 2015
  • The main purpose of this research is to utilize simple mathematical models to depict the vibration behavior and the resulted sound field of a piezoelectric disk for ultrasonic transducers. Instead of using 1-D vibration model, coupled effect between the thickness and the radial motions was considered to be close to the real vibration behavior. Moreover, Huygens-Fresnel principle was used in both incident and reflected waves to analyze the sound field under obstacles in finite distance. Results of the tested piezoelectric disk show that, discrepancies between the simulation and experiment are 2.5% for resonant frequency and 12% for resulted sound field. Therefore, the proposed method can be used to reduce the complexity in modeling vibration problems, and increase the reliability on analyzing piezoeletric transducers in the design stage.

Experimental Verification of the Unified Formula for Electromechanical Coupling Coefficient of Piezoelectric Resonators

  • Kim, Jung-Soon;Kim, Moo-Joon;Ha, Kang-Lyeol;Cao, Wen-Wu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.3E
    • /
    • pp.110-114
    • /
    • 2006
  • In a previous theoretical paper, we have derived a unified formula by considering 2-D coupled mode vibrations. The unified formula for electromechanical coupling coefficient of piezoelectric resonator was verified experimentally. The capacitance change near the resonant frequency was investigated to estimate the effective coupling coefficient of the resonator instead of the conventional method based on I-D model. The susceptance spectra were measured for the seven samples of piezoelectric resonator with different aspect ratio. Excellent agreement between theoretical and experimental results was obtained.

A Study on the frequency characteristic of ZnO Piezoelectric transducers (ZnO 압전변환기의 주파수특성에 관한 연구)

  • 정규원;이종덕;정광천;박상만;송준태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.189-192
    • /
    • 1996
  • In this paper ZnO Piezoelectric transducers were fabricated as follows, counter electrode (pt 99.9%) was deposited on the sapphire substrates by DC sputter method, and then piezoelectric layer (ZnO 99.999%) was deposited on the counter electrode according to the sputtering parameters, and then top electrode (pt 99.9%) was deposited on the piezoelectric layer by Electron Beam Gun Evaporator. Structural characteristic of deposited ZnO thin film was measured by XRD, SEM. Also, Frequency characteristic of ZnO transducer was analyzed theoretically and practically for input frequencies.

  • PDF

Fabrication and Characteristic Analysis of Piezoelectric Micro-Transformer (초소형 마이크로 압전변압기 제작 및 특성 분석)

  • Kim Seong-Kon;Seo Young-Ho;Choi Doo-Sun;Whang Kyung-Hyun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.469-470
    • /
    • 2006
  • Piezoelectric transformers based on lead zirconate titanate(PZT) have been received considerable interest because of their wide potential applications in transformer, oscillator, resonance sensor, actuator, acoustic transducer, as well as active slider for hard disk drives. However, for the applications which need a small power supply such as thin and flat displays, micro-robot, micro-system, it is especially necessary to integrate the passive components because they typically need more than 2/3 of the space of the conventional circuit. So, we have fabricated the piezoelectric micro-transformer to supply energy for micro-systems using PZT thin films and MEMS technologies.

  • PDF

Vibration Characteristics of Langevin-Type Piezoelectric Torsional Transducers (랑주방형 압전 비틀림 변환기의 진동특성)

  • Kim, Jin-O;Gwon, O-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1197-1205
    • /
    • 2001
  • The vibrational characteristics of Langevin-type piezoelectric torsional transducers, which consist of a couple of piezoelectric discs and a couple of elastic blocks, have been studied theoretically and experimentally in this paper. The differential equations of piezoelectric torsional motion have been derived in terms of the circumferential displacement and the electric potential. Solutions of the boundary-value problem have yielded the natural frequencies and mode shapes of the transducers. The theoretical solutions have been verified by comparing the numerical results with experimental ones.

Forward-Looking Ultrasound Imaging Transducer : I. Analysis and Design (전향 초음파 영상 트랜스듀서 : I. 해석 및 설계)

  • Lee, Chan-Kil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.2E
    • /
    • pp.73-86
    • /
    • 1995
  • The transducer section of the forward-looking ultrasound imaging catheter (FLUIC) consists of a circular piezoelectric element as a vibrator and a conical acoustic mirror as a perfect reflector. A small diameter piezoelectric transducer element is mounted on the side of a catheter's rotating shaft. The unique design of FLUIC provides the capability to form a two-dimensional image of a cross-section of vessel in front of the catheter, which is lacking in the present generation of intravascular ultrasound (IVUS) transducers, as well as a conventional side view image. The mirror configuration for the transducer section of the FLUIC is designed using an approximated ray tracing techniques. The diffraction transfer function approach [1] developed for the field prediction from primary sources is generalized and extended to predict the secondary diffraction characterstics from an acoustic mirror. The extended model is verified by simulation and experiment through a simple plane reflector and employed to analyzed the field characteristics of a FLUIC.

  • PDF