• Title/Summary/Keyword: piezoelectric material

Search Result 1,406, Processing Time 0.033 seconds

A Study on Mass Flow Control and FEA of Plate Spring Attached in Piezoelectric Ceramic (세라믹 압전체에 부착된 판 스프링의 유한요소해석과 질량 흐름 제어에 관한 연구)

  • Lee, S.K.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.7 no.4
    • /
    • pp.61-66
    • /
    • 2003
  • In this paper, the relation between displacement of piezoelectric material and electric field was proposed. FEA was introduced to predict the displacement and reaction force of plate spring attached in the piezoelectric material. The relation between displacement of piezoelectric material forced by plate spring and applied electric field were further verified by experimental investigation. Also, the flow rate of gas in piezoelectric valve was examined by experiment. Finally, the relation between electric field and gas flow was derived. Based on these results, these relations can be used in the design of mass flow controller.

  • PDF

A Research for Piezoelectric Energy Harvesters Based on Flammable Material (가연성 소재 기반의 에너지 하베스터 연구)

  • Kang, Woo-Seok;Koh, Jung-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.863-865
    • /
    • 2014
  • Energy problem has been issued in worldwide because fossil fuel has being almost exhausted. A lot of renewable energy have been received attention to replace the energy from fossil fuel. Among them, piezoelectric energy harvester is one of excellent candidates. In general, micro scaled small sized energy harvesters were usually based on the lithography process. However, these lithography process require complicated process and high cost. In this paper, a new process has been proposed for micro-scaled piezoelectric energy harvester. $0.2Pb(Mg_{1/3}Nb_{2/3})O_3-0.8Pb(Zr_{0.52}Ti_{0.48})O_3$ composition was used as piezoelectric material due to excellent piezoelectric properties and also can be easily prepared by mixed oxide method.

Influence of Circular Void on a Crack in a Piezoelectric Material (압저재료에서 원공결함이 균열에 미치는 영향)

  • 이종권;조종두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.539-542
    • /
    • 2000
  • In this paper, the influence of circular void on a crack in piezoelectric materials under mechanical and electric loads is investigated by using finite element method code, ANSYS. Both ceramics and piezoelectric materials are compared with stress intensity factor and crack extension force at crack tip on arbitrary located circular void under Mode I loads. It was found that piezoelectric materials's crack extension force is larger than ceramics.

  • PDF

The Effective Modeling of Piezoelectric Actuator in Quasi-static Equilibrium Condition (준 평형 압전 구동기의 효과적 모델링 기법)

  • 박종규;문원규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.768-771
    • /
    • 2002
  • A method to derive the constitutive relations of a piezoelectric bender actuator is developed here. The constitutive relations are derived from the geometry, material properties of the actuator. The very complicated constitutive relations can be easily calculated by use of symbolic function in Mathematica. The developed program can calculate the constitutive relations for the unimorph bender made by attaching a short piezoelectric beam on a longer metal beam. The program can also calculate the constitutive relations of a piezoelectric bender with spring at its end.

  • PDF

Active vibration robust control for FGM beams with piezoelectric layers

  • Xu, Yalan;Li, Zhousu;Guo, Kongming
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.33-43
    • /
    • 2018
  • The dynamic output-feedback robust control method based on linear matrix inequality (LMI) method is presented for suppressing vibration response of a functionally graded material (FGM) beam with piezoelectric actuator/sensor layers in this paper. Based on the reduced model obtained by using direct mode truncation, the linear fractional state space representation of a piezoelectric FGM beam with material properties varying through the thickness is developed by considering both the inherent uncertainties in constitution material properties as well as material distribution and the model error due to mode truncation. The dynamic output-feedback robust H-infinity control law is implemented to suppress the vibration response of the piezoelectric FGM beam and the LMI method is utilized to convert control problem into convex optimization problem for efficient computation. In numerical studies, the flexural vibration control of a cantilever piezoelectric FGM beam is considered to investigate the accuracy and efficiency of the proposed control method. Compared with the efficient linear quadratic regulator (LQR) widely employed in literatures, the proposed robust control method requires less control voltage applied to the piezoelectric actuator in the case of same control performance for the controlled closed-loop system.

Dynamic Characteristics of an Eccentric Crack in a Functionally Graded Piezoelectric Ceramic Strip

  • Shin, Jeong-Woo;Kim, Tae-Uk;Kim, Sung-Chan
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1582-1589
    • /
    • 2004
  • The dynamic response of an eccentric Griffith crack in functionally graded piezoelectric ceramic strip under anti-plane shear impact loading is ana lysed using integral transform method. Laplace transform and Fourier transform are used to reduce the problem to two pairs of dual integral equations, which are then expressed to Fredholm integral equations of the second kind. We assume that the properties of the functionally graded piezoelectric material vary continuously along the thickness. The impermeable crack boundary condition is adopted. Numerical values on the dynamic stress intensity factors are presented for the functionally graded piezoelectric material to show the dependence of the gradient of material properties and electric loadings.

The Dielectric and Piezoelectric Characteristics of PMN- PSN-Pfl Ceramic as a Fucntion of Glass Frit (Glass Frit 첨가량에 따른 PMN-PSN-PZT계 세라믹의 유전 및 압전특성)

  • 김성진;류주현;이수호;홍재일;윤현상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.256-259
    • /
    • 1999
  • The purpose of this study is to develop the material for multiayer piezoelectric ceramic transformer because multiayer piezoelectric transformer must need low sintering temperature. So that PMN-PSN-PZT family ceramics were added with glass brit(SiO$_2$ $.$ PbO). The dielectric and piezoelectric properties were increased with increasing it until the amounts of additive 0.8wt%. Sintering temperature were low about 100[$^{\circ}C$]. Accordingly, This material could be used to multiayer piezoelectric transformer .

  • PDF

Design of Shaking Beam for Piezoelectric Linear Ultrasonic Motor

  • Yoon, Seok-Jin;Park, Ji-Won;Kim, Sang-Jong;Yu, Yeon-Tae;Kim, Hyun-Jai
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.11
    • /
    • pp.1062-1066
    • /
    • 2003
  • Design of a piezoelectric actuator for the ultrasonic motor must ensure that contact point has elliptic trajectory of movement. The new idea of an elliptic trajectory formation of the piezoelectric actuator is investigated in the paper. Shaking beam for the piezoelectric linear ultrasonic motor was introduced to realize this new idea. The principle is based on the excitation of longitudinal and flexural vibrations of the actuator by using two sources of longitudinal mechanical vibrations shifted by $\pi$/2. Mode-frequency and harmonic response analyses of the actuator based on FEM have been carried out. The moving trajectory of the contact point has been defined. Finally, The experimental research of shaking beam has been confirmed an opportunity of the elliptic trajectory reception with the help of one stable mode of the vibrations.

The Piezoelectric Characteristics Depending on the GrainSize of the PT-PZ-PNN Ceramics (압전변압기용 PT-PZ-PNN 세라믹스의 그레인 크기에 따른 압전특성)

  • 박정호;김철수;김성곤;이상렬
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.10
    • /
    • pp.815-820
    • /
    • 2001
  • The piezoelectric properties of the PT-PZ-PNN system ceramics were investigated depending on the variati on of the grain size. The grain size was varied by sintering temperature, and additive. The effect of the grain size on the electrical, dielectric, and piezoelectric properties was studied with respect to the feasibility of the application for the piezoelectric transformer. Grain size increased as the PMW contents increased. The smaller the particle size used, the smaller the grain size obtained. Specimens are densily sintered. Dielectric and piezoelectric properties are not always improved in proportion to the grain sizes. When he particle size are fine and the grain size are increased properly with the optimum additives, the piezoelectric preperties have good values. the specimen sintered at 1200$\^{C}$ with PMW 2 mol% and MnO$\_$2/ 0.5wt% contents exhibited good piezoelectric properties for a piezoelectric transformer.

  • PDF

Characteristics of A Multilayer Piezoelectric Transformer Using PAN-PZT Ceramics (PAN-PZT계 세라믹스를 이용한 적층형압전변압기의 특성)

  • 박타리;이동균;최지원;신용덕;김현재;고태국;윤석진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.143-146
    • /
    • 2002
  • The characteristics of a multilayer piezoelectric transformer were investigated using 0.05Pb(A $l_{0.5}$N $b_{0.5}$) $O_3$-0.95Pb(Z $r_{0.52}$ $Ti_{0.48}$) $O_3$+0.9wt%N $b_2$ $O_{5}$+0.5wt%Mn $O_2$+0.04wt% $V_2$ $O_{5}$ ceramics. The multilayer piezoelectric trans formers were developed for voltage step-up. The multilayer ceramic technology was applied in piezoelectric transformer. The electrical characteristics of the piezoelectric transformer (33x8.5x1mm) has the efficiency of above 85%, step-up ratio of 70 under the 130 kΩ load, and driving frequency of 93.5kHz, respectively.ctively.y.y.

  • PDF