• Title/Summary/Keyword: piezoelectric impedance

Search Result 201, Processing Time 0.028 seconds

Development of Piezoelectric Level Switch for High Temperature (고온용 압전 레벨 스위치 개발)

  • Kim, Na-Ri;Lee, Young-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.802-807
    • /
    • 2015
  • This paper describes the development of a piezoelectric level switch, which aims to effectively monitor the level status in high ambient temperatures. In order to adjust the impedance near the resonant frequency and temperature characteristics, the effect of the case and backing layer materials on its performance was analyzed using the finite element method (FEM). The suggested prototype new level switch has three heat-sink plates attached to SUS bar of 230 mm long, and case of PEEK which contains PZT sensing part. To illustrate the validity of this level switch, 10 samples are prepared and investigated the sensing performance through the high and low temperature ambient.

Electrical Properties of Multilayer Piezoelectric Transformer using PMN-PZN-PZT Ceramics (PMN-PZN-PZT 세라믹스를 이용한 적층형 압전변압기의 전기적 특성)

  • Lee, Chang-Bae;Yoo, Ju-Hyun;Paik, Dong-Soo;Kang, Jin-Kyu;Cho, Hong-Hee;Lee, Sung-Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.655-661
    • /
    • 2006
  • Dielectric and piezoelectric properties of PMN-PZT ceramics with a high mechanical quality factor$(Q_m)$ and a low temperature sintering temperature were investigated as a function of PZN substitution in order to develop multilayer piezoelectric transformer for AC-DC converter. Multilayer piezoelectric transformers were subsequently manufactured using the PMN-PZN-PZT ceramic offering the optimal behavior and then the electrical performance were invetigated. At the sintering temperature of $940^{\circ}C$, density, electromechanical coupling factor$(k_p)$, mechanical qualify factor$(Q_m)$ and dielectric constant$(\varepsilon_r)$ of 8 mol% PZN substituted specimen were $7.73g/cm^3$, 0.524, 1573 and 1455, respectively. The PZN substitution caused a increase in the dielectric constant and the electromechnical coupling factor. The voltage step-up ratio of multilayer piezoelectric transformer showed the maximum value at near the resonant frequency of 76.55 kHz and increased according to the increase of load resistance. The multilayer piezoelectric transformer with the output impedance coincided with the load resistance showed the temperature increase of less than $20^{\circ}C$ at the output power of 10 W. Based on the results, the manufactured multilayer transformer using the low temperature sintered PMN-PZN-PZT ceramics can be stably driven for both step-up and down transformers.

Electromechanical impedance-based long-term SHM for jacket-type tidal current power plant structure

  • Min, Jiyoung;Yi, Jin-Hak;Yun, Chung-Bang
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.283-297
    • /
    • 2015
  • Jacket-type offshore structures are always exposed to severe environmental conditions such as salt, high speed of current, wave, and wind compared with other onshore structures. In spite of the importance of maintaining the structural integrity for an offshore structure, there are few cases to apply a structural health monitoring (SHM) system in practice. The impedance-based SHM is a kind of local SHM techniques and to date, numerous techniques and algorithms have been proposed for local SHM of real-scale structures. However, it still requires a significant challenge for practical applications to compensate unknown environmental effects and to extract only damage features from impedance signals. In this study, the impedance-based SHM was carried out on a 1/20-scaled model of an Uldolmok current power plant structure in Korea under changes in temperature and transverse loadings. Principal component analysis (PCA)-based approach was applied with a conventional damage index to eliminate environmental changes by removing principal components sensitive to them. Experimental results showed that the proposed approach is an effective tool for long-term SHM under significant environmental changes.

Impedance-based Long-term Structural Health Monitoring for Tidal Current Power Plant Structure in Noisy Environments (잡음 환경 하에서의 전기-역학적 임피던스 기반 조류발전 구조물의 장기 건전성 모니터링)

  • Min, Ji-Young;Shim, Hyo-Jin;Yun, Chung-Bang;Yi, Jin-Hak
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.59-65
    • /
    • 2011
  • In structural health monitoring (SHM) using electro-mechanical impedance signatures, it is a critical issue for extremely large structures to extract the best damage diagnosis results, while minimizing unknown environmental effects, including temperature, humidity, and acoustic vibration. If the impedance signatures fluctuate because of these factors, these fluctuations should be eliminated because they might hide the characteristics of the host structural damages. This paper presents a long-term SHM technique under an unknown noisy environment for tidal current power plant structures. The obtained impedance signatures contained significant variations during the measurements, especially in the audio frequency range. To eliminate these variations, a continuous principal component analysis was applied, and the results were compared with the conventional approach using the RMSD (Root Mean Square Deviation) and CC (Cross-correlation Coefficient) damage indices. Finally, it was found that this approach could be effectively used for long-term SHM in noisy environments.

A Study on Square-Structure Estimation of Fastening Condition of Bolt Using PZT Patches (PZT를 이용한 사각구조물 볼트체결상태 계측에 관한 연구)

  • Chae, Kwan-Seok;Ha, Nam;Hong, Dong-Pyo;Chae, Hee-Chang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.860-863
    • /
    • 2005
  • This work presents a study on development of a practical and quantitative technique for assessment of the structural health condition by PZT impedance-based technique associated with longitudinal wave propagation. The bolt fastening condition is adjusted by torque wrench In order to estimate the damage condition numerically, we suggest the evaluation method of impedance peak frequency shift $\Delta$F in this paper.

  • PDF

A Study of the Fabrication and Enhancement of Film Bulk Acoustic Wave Resonator using Two-Step Deposition Method of Piezoelectric Layer (압전층의 2단 증착법을 이용한 체적 음향파 박막형 공진기의 제작과 성능향상에 관한 연구)

  • Park Sung-Hyun;Chu Soon-Nam;Lee Neung-Heon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.7
    • /
    • pp.308-314
    • /
    • 2005
  • The 2 GHz film bulk acoustic wave resonator(FBAR), one of the most necessary device of the next generation mobile communication system, consisted of solidly mounted resonator(SMR) structure using Brags reflector, was researched in this paper The FBAR applied SiO$_{2}$ and W had large difference of the acoustic impedance to reflector Al to electrode and ZnO to piezoelectric layer. Specially, the FBAR applied the two-step deposition method to improve the c-axis orientation and increase reproducibility of the fabrication device had good performance. The electrical properties of plasma such as impedance, resistance, reactance, $V_{pp},\;I{pp}$, VSWR and phase difference of voltage and current, was analyzed and measured by RF sensor with the variable experiment process factors such as gas ratio, RF power and base vacuum level about concerning the thickness, c-axis orientation, adhesion and roughness. The FBAR device about the optimum condition resulted reflection loss(S$_{11}$) of -17 dB, resonance frequency of 1.93 GHz, electric-mechanical coefficient(k$_{eff}$) of 2.38 $\%$ and Qualify factor of 580. It was seen better qualify than the common dielectric filter at present and expected on business to the filter device of 2 GHz bandwidth with the MMIC technology.

Interface monitoring of steel-concrete-steel sandwich structures using piezoelectric transducers

  • Yan, Jiachuan;Zhou, Wensong;Zhang, Xin;Lin, Youzhu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1132-1141
    • /
    • 2019
  • Steel-concrete-steel (SCS) sandwich structures have important advantages over conventional concrete structures, however, bond-slip between the steel plate and concrete may lead to a loss of composite action, resulting in a reduction of stiffness and fatigue life of SCS sandwich structures. Due to the inaccessibility and invisibility of the interface, the interfacial performance monitoring and debonding detection using traditional measurement methods, such as relative displacement between the steel plate and core concrete, have proved challenging. In this work, two methods using piezoelectric transducers are proposed to detect the bond-slip between steel plate and core concrete during the test of the beam. The first one is acoustic emission (AE) method, which can detect the dynamic process of bond-slip. AE signals can be detected when initial micro cracks form and indicate the damage severity, types and locations. The second is electromechanical impedance (EMI) method, which can be used to evaluate the damage due to bond-slip through comparing with the reference data in static state, even if the bond-slip is invisible and suspends. In this work, the experiment is implemented to demonstrate the bond-slip monitoring using above methods. Experimental results and further analysis show the validity and unique advantage of the proposed methods.

Transverse dynamics of slender piezoelectric bimorphs with resistive-inductive electrodes

  • Schoeftner, Juergen;Buchberger, Gerda;Benjeddou, Ayech
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.355-374
    • /
    • 2016
  • This paper presents and compares a one-dimensional (1D) bending theory for piezoelectric thin beam-type structures with resistive-inductive electrodes to ANSYS$^{(R)}$ three-dimensional (3D) finite element (FE) analysis. In particular, the lateral deflections and vibrations of slender piezoelectric beams are considered. The peculiarity of the piezoelectric beam model is the modeling of electrodes in such a manner that is does not fulfill the equipotential area condition. The case of ideal, perfectly conductive electrodes is a special case of our 1D model. Two-coupled partial differential equations are obtained for the lateral deflection and for the voltage distribution along the electrodes: the first one is an extended Bernoulli-Euler beam equation (second-order in time, forth order in space) and the second one the so-called Telegrapher's equation (second-order in time and space). Analytical results of our theory are validated by 3D electromechanically coupled FE simulations with ANSYS$^{(R)}$. A clamped-hinged beam is considered with various types of electrodes for the piezoelectric layers, which can be either resistive and/or inductive. A natural frequency analysis as well as quasi-static and dynamic simulations are performed. A good agreement between the extended beam theory and the FE results is found. Finally, the practical relevance of this type of electrodes is shown. It is found that the damping capability of properly tuned resistive or resistive-inductive electrodes exceeds the damping performance of beams, where the electrodes are simply linked to an optimized impedance.