• 제목/요약/키워드: piezoelectric high-polymer material

검색결과 8건 처리시간 0.031초

압전 에너지 수확기의 성능 향상을 위한 복합재료 기반 소재 및 공정 기술 검토 (Composite-Based Material and Process Technology Review for Improving Performance of Piezoelectric Energy Harvester)

  • 김건수;장지운;김성륜
    • Composites Research
    • /
    • 제34권6호
    • /
    • pp.357-372
    • /
    • 2021
  • 에너지 수확장치는 석유자원의 고갈로 인한 자원난을 해결할 수 있는 대안으로 유망하다고 알려져 있다. 기계적 움직임을 전기 에너지로 전환할 수 있는 압전 소자들의 한계(환경오염 및 낮은 기계적 특성)를 극복하기 위하여, 고분자 기지재 기반 복합재료 압전 에너지 수확장치에 대한 많은 연구들이 수행되었다. 본 논문에서는 사용된 재료 및 공정에 기초하여, 보고된 압전 복합재료의 출력 성능 및 관련된 응용 분야를 검토하였다. 압전 필러는 티탄산 지르콘산 연 및 티탄산바륨 기반의 세라믹 필러뿐만 아니라, 친환경, 생체적합성 및 유연성 측면에서 유리한 산화아연을 검토하였다. 기지재는 폴리비닐리덴플로오라이드 및 공중합체로 구성된 압전 고분자 및 에폭시 및 폴리디메틸실록산 기반의 유연한 고분자로 분류하여 복합재료의 압전 시너지 및 높은 외력 적용에 의한 압전 출력 향상을 논의하였다. 또한, 금속 혹은 탄소 소재 기반 2차 필러의 적용에 의한 복합재료의 전도성 혹은 기계적 특성의 향상이 압전 수확장치의 출력 성능에 미치는 영향을 복합재료의 구조 측면에서 검토하였다. 향상된 성능으로 소형 전자기기, 스마트 센서, 의학 분야 등에 응용 가능한 복합재료 기반 압전 수확장치는 미래의 일상에서 접할 수 있는 무선 전자 장치의 전원으로써 잠재적인 통찰을 제공할 수 있다.

유기-무기 하이브리드 압전 나노복합체 기반의 플렉서블 에너지 하베스터 제작 및 발전성능 평가 (Flexible Energy Harvester Made of Organic-Inorganic Hybrid Piezoelectric Nanocomposite)

  • 권유정;현동열;박귀일
    • 한국재료학회지
    • /
    • 제29권6호
    • /
    • pp.371-377
    • /
    • 2019
  • A flexible piezoelectric energy harvester(f-PEH) that converts tiny mechanical and vibrational energy resources into electric signals without any restraints is drawing attention as a self-powered source to operate flexible electronic systems. In particular, the nanocomposites-based f-PEHs fabricated by a simple and low-cost spin-coating method show a mechanically stable and high output performance compared to only piezoelectric polymers or perovskite thin films. Here, the non-piezoelectric polymer matrix of the nanocomposite-based f-PEH is replaced by a P(VDF-TrFE) piezoelectric polymer to improve the output performance generated from the f-PEH. The piezoelectric hybrid nanocomposite is produced by distributing the perovskite PZT nanoparticles inside the piezoelectric elastomer; subsequently, the piezoelectric hybrid material is spin-coated onto a thin metal substrate to achieve a nanocomposite-based f-PEH. A fabricated energy device after a two-step poling process shows a maximum output voltage of 9.4 V and a current of 160 nA under repeated mechanical bending. Finite element analysis(FEA) simulation results support the experimental results.

산소 분압 조절에 따른 ITO/PVDF 박막 물성 조절 연구 (Physical Properties of ITO/PVDF as a function of Oxygen Partial Pressure)

  • 이상엽;김지환;박동희;변동진;최원국
    • 한국전기전자재료학회논문지
    • /
    • 제21권10호
    • /
    • pp.923-929
    • /
    • 2008
  • On the piezoelectric polymer, PVDF (poly vinylidene fluoride), the transparent conducting oxide (TCO) electrode material thin film was deposited by roll to roll sputtering process mentioned as a mass product-friendly process for display application. The deposition method for ITO Indium Tin Oxides) as our TCO was DC magnetron sputtering optimized for polymer substrate with the low process temperature. As a result, a high transparent and good conductive ITO/PVDF film was prepared. During the process, especially, the gas mixture ratio of Ar and Oxygen was concluded as an important factor for determining the film's physical properties. There were the optimum ranges for process conditions of mixture gas ratio for ITO/PVDF From these results, the doping mechanism between the oxygen atom and the metal element, Indium or Tin was highly influenced by oxygen partial pressure condition during the deposition process at ambient temperature, which gives the conductivity to oxide electrode, as generally accepted. With our studies, the process windows of TCO for display and other application can be expected.

셀룰로오스 Electro-Active Paper(EAPap)를 이용한 변형률 센서 (Strain Sensor Application Using Cellulose Electro-Active Paper(EAPap))

  • 장상동;김주형;김재환
    • 한국소음진동공학회논문집
    • /
    • 제19권9호
    • /
    • pp.915-921
    • /
    • 2009
  • Cellulose based electro-active paper(EAPap) is considered as a new smart material which has a potential to be used for biomimetic actuators and sensors. Beside of the natural abundance, cellulose EAPap is fascinating with its biodegradability, lightweight, high mechanical strength and low actuation voltage. When the external stress is applied to EAPap, it can generate the electrical output due to its piezoelectric property. Using piezoelectric behavior of EAPap, we studied the feasibility of EAPap as mechanical strain sensor applications and compared to commercial strain sensor. By measuring the induced output voltage from the thin piezoelectric cellulose EAPap under static and dynamic force, we propose cellulose EAPap film as a potential strain sensor material.

Robust motion control of a flexible micro-actuator using $H_{\infty}$ control method

  • Okugawa, Masayuki;Sasaki, Minoru;Fujisawa, Fumio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.397-400
    • /
    • 1996
  • In this paper, robust motion control of a flexible micro-actuator is presented. The actuator is made of a bimorph piezoelectric high-polymer material (PVDF). No mathematical model system can exactly model a physical system such a flexible micro-actuator. For this reason we must be aware of how modeling errors might adversely affect the performance of a control system for such a model. The H method addresses a wide range of the control problems, combining the frequency and time domain approaches. The design is an optimal one in the sense of minimization of the maximum of the closed-loop transfer function. It includes colored measurement and process noise. It also addresses the issues of robustness due to model uncertainties, and is applicable to the, flexible micro-actuator control problem. Therefore, we adopt the H control problem to the robust motion control of the flexible micro-actuator. Theoretical and experimental results demonstrate the satisfactory performance and the effectiveness of the designed controller. the effectiveness of the designed controller.

  • PDF

비납계 BCTZ 압전세라믹과 압전폴리머로 제작된 하이브리드 나노복합체 기반의 플렉서블 에너지 하베스팅 소자 (Flexible Energy Harvesting Device based on Hybrid Piezoelectric Nanocomposite made of Lead-Free BCTZ Ceramic and Piezo-polymer)

  • 박성철;이재훈;김연규;박귀일
    • 한국전기전자재료학회논문지
    • /
    • 제35권1호
    • /
    • pp.72-79
    • /
    • 2022
  • Piezoelectric energy harvesting technologies, which can be used to convert the electricity from the mechanical energy, have been developed in order to assist or power the wearable electronics. To realize non-toxic and biocompatible electronics, the lead-free (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 (BCTZ) nanoparticles (NPs) are being studied with a great attention as flexible energy harvesting device. Herein, piezoelectric hybrid nanocomposites were fabricated using BCTZ NPs-embedded poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] matrix to improve the performance of flexible energy harvester. Output performance of the fabricated energy device was investigated by the well-optimized measurement system during the periodically bending and releasing motions. The generated open-circuit voltage and the short-circuit current of the piezoelectric hybrid nanocomposite-based energy harvester reached up to ~15 V and ~1.1 ㎂, respectively; moreover, the instantaneous power of 3.5 ㎼ is determined from load voltage and current at the external load of 20 MΩ. This research is expected to cultivate a new approach to high-performance wearable self-powering electronics.

Detection of flaw in steel anchor-concrete composite using high-frequency wave characteristics

  • Rao, Rajanikant;Sasmal, Saptarshi
    • Steel and Composite Structures
    • /
    • 제31권4호
    • /
    • pp.341-359
    • /
    • 2019
  • Non-monolithic concrete structural connections are commonly used both in new constructions and retrofitted structures where anchors are used for connections. Often, flaws are present in anchor system due to poor workmanship and deterioration; and methods available to check the quality of the composite system afterward are very limited. In case of presence of flaw, load transfer mechanism inside the anchor system is severely disturbed, and the load carrying capacity drops drastically. This raises the question of safety of the entire structural system. The present study proposes a wave propagation technique to assess the integrity of the anchor system. A chemical anchor (embedded in concrete) composite system comprising of three materials viz., steel (anchor), polymer (adhesive) and concrete (base) is considered for carrying out the wave propagation studies. Piezoelectric transducers (PZTs) affixed to the anchor head is used for actuation and the PZTs affixed to the surrounding concrete surface of the concrete-anchor system are used for sensing the propagated wave through the anchor interface to concrete. Experimentally validated finite element model is used to investigate three types of composite chemical anchor systems. Studies on the influence of geometry, material properties of the medium and their distribution, and the flaw types on the wave signals are carried out. Temporal energy of through time domain differentiation is found as a promising technique for identifying the flaws in the multi-layered composite system. The present study shows a unique procedure for monitoring of inaccessible but crucial locations of structures by using wave signals without baseline information.

잉크젯 인쇄기술을 이용한 인쇄회로기판의 에칭 레지스터 패터닝 (Etch resist patterning of printed circuit board by ink jet printing technology)

  • 서상훈;이로운;김용식;김태구;박성준;윤관수;박재찬;정경진;정재우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.108-108
    • /
    • 2007
  • Inkjet printing is a non-contact and direct writing associated with a computer. In the industrial field, there have been many efforts to utilize the inkjet printing as a new way of manufacturing, especially for electronic devices. The etching resist used in this process is an organic polymer which becomes solidified when exposed to ultraviolet lights and has high viscosity of 300 cPs at ambient temperature. A piezoelectric-driven ink jet printhead is used to dispense $20-40\;{\mu}m$ diameter droplets onto the copper substrate to prevent subsequent etching. In this study, factors affecting the pattern formation such as printing resolution, jetting property, adhesion strength, etching and strip mechanism, UV pinning energy have been investigated. As a result, microscale Etch resist patterning of printed circuit board with tens of ${\mu}m$ high have been fabricated.

  • PDF