• Title/Summary/Keyword: piezoelectric cantilever

Search Result 179, Processing Time 0.026 seconds

Vibration Reduction of Cantilever using Passive Piezoelectric Shunt (수동형 압전션트를 이용한 외팔보의 진동저감 연구)

  • Yun, Yangsoo;Kim, Jaechul;Noh, Heemin
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.417-426
    • /
    • 2018
  • Piezoelectric shunt is an electric type damper capable of reducing the vibration of the structure. Vibration generated at the natural frequency of the structure are converted into electrical energy through the piezoelectric material attached to the structure. Electric energy can be dissipated by thermal energy using piezoelectric shunt composed of inductor and resistance to reduce vibration. In this paper, the equation for the optimum inductance required to reduce the vibration of the cantilever beam was examined and the vibration of the aluminum cantilever was reduced by using finite element analysis and experiments. In the finite element analysis, the mode shape and the strain energy distribution were calculated to examine the mounting position, and the vibration reduction of the cantilever was calculated by adjusting the inductance and resistance circuit values. In addition, in the experiment, a variable inductor module was used to reduce the vibration occurring at a specific frequency of the cantilever. Finally, based on the results of the finite element analysis and the experiment, it was verified that the piezoelectric shunt can effectively reduce the vibration of the cantilever.

Frequency Characteristics of Energy Harvester Using Piezoelectric Elements (압전식 에너지 수확기의 주파수 특성)

  • Yun, So-Nam;Kim, Dong-Gun;Ham, Young-Bog;Park, Jung-Ho;Jeong, Byeong-Hong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3131-3135
    • /
    • 2008
  • This paper presents an energy harvester using piezoelectric elements that is a kind of generator which converts the mechanical power to the electric one using windmill system with many PZT actuators. In this study, low frequency characteristics of the cantilever-type piezoelectric actuator are experimentally investigated. Advantages of the cantilever use are to take a very large displacement and to improve the endurance of the PZT element. The material of cantilever is an aluminum and three kinds of cantilever of which size is $150[mm]{\times}20[mm]{\times}1.5[mm]$, $170[mm]{\times}20[mm]{\times}1.5[mm]$ and $190[mm]{\times}20[mm]{\times}1.5[mm]$ were experimented, respectively. The cantilever was fixed on the vibrator. The characteristics of frequency and mass variation of cantilever end part such as 0[g], 5[g], 10[g] are investigated. Maximum voltage was outputted at the condition of $150[mm]{\times}20[mm]{\times}1.5[mm]$ and 10[g] of mass. It was confirmed that the lower natural frequency at the larger length of cantilever and at the bigger of mass is gotten.

  • PDF

Improved Power Output by a Piezoelectric Cantilever after Addition of a Cylindrical Bar (원통 봉을 적용한 압전 캔틸레버의 성능 향상)

  • Lee, Youngjin;Kim, Seiki;Kim, Young-Deuk
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.516-521
    • /
    • 2014
  • This paper describes the development of a new piezoelectric unimorph cantilever structure intended to improve electrical output power, compared to a conventional cantilever. The proposed structure employs a cylindrical bar attached to one side of a steel plate, which is a significant factor in forced vibration mode. The feasibility of the proposed methodology was assessed experimentally and theoretically. The influence of three different types of bar material (i.e., stainless steel, silicon rubber, and urethane), and bar position, on the output voltage were examined and compared with those without the bar. The optimal position and material for the bar were identified through experimental and theoretical analyses. It appears that the electrical output power of the proposed cantilever is about 40% higher than that of a conventional unimorph cantilever.

A Study on the Output Characteristics for the Cantilever Piezoelectric Bimorph (Cantilever형 바이몰프 압전소자의 출력특성에 관한 연구)

  • Kim, Yong-Hyuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.581-587
    • /
    • 2010
  • Using piezoelectric elements to harvest energy from ambient vibrations has been of great interest over the past few years. Due to the relatively low power output of piezoelectric materials, there are many study to improve the energy harvesting efficiencies. This paper is study the efficiencies of the output energy considering the cantilever piezoelectric bimorph using aluminum vibration beam. when the length of vibration beam and the piezoelectric body becomes same and the maximum output power comes out. DC voltage was increased as the beam thickness and vibration frequency was increased. The vibration beam was able to achieve very large energy value.

Phase delay control of a cantilever beam using piezoelectric materials (압전체를 사용한 외팔보 진동의 위상지연 제어)

  • Hwang, Jin-Gwon;Choe, Jong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.4
    • /
    • pp.343-349
    • /
    • 1997
  • In a lightly damped cantilever beam, most of the vibration energy is found around natural frequencies. Based on this, a phase delay control for suppressing vibration of the beam is proposed in this paper. This controller is designed to behave like a velocity feedback controller at the frequencies of modes to be controlled. Also, this controller is designed in consideration with uncontrolled modes for robust stability and improving of the sensitivity function of the control system. This phase delay control is applied to vibration suppression of a cantilever beam with a pair of a piezoelectric actuator and a piezoelectric sensor. Experimental results showed that the phase delay control functions efficiently.

  • PDF

Design and Fabrication of Piezoceramic Cantilever Type Vibration Sensors (압전세라믹 외팔보형 진동센서의 설계 및 제작)

  • 정이봉;노용래
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.377-386
    • /
    • 1997
  • A cantilever type piezoceramic vibration sensor was developed that could make up for the short-comings of current vibration sensors, such as high price, low sensitivity, and complex structure. For the design, in conjunction with piezoelectric constitutive equations, we derived full analytic response equations of the piezoelectric bimorph sensor to external forces. The external forces were supposed to take the form of either step or sinusoidal force. Based on the results, actual piezoelectric vibration sensors were fabricated and tested for verification of the theoretical results. Further, comparison of the performance of the developed sensor was made with that of a commercially available representative vibration sensor so that quantitative evaluation of its sensitivity could be made. The sensor developed in this work showed excellent sensitivity and thermal stability in addition to the merits of simple structure and low fabrication cost in comparison with conventional mass-loaded piezoelectric sensors.

  • PDF

Investigation of piezoelectric ceramic size effect for miniaturing the piezoelectric energy harvester (소형 압전 에너지 하베스터 구현을 위한 세라믹 크기 변화)

  • Kim, Hyung-Chan;Jung, Woo-Suk;Kang, Chong-Yun;Yoon, Seok-Jin;Ju, Byeong-Kwon;Jeong, Dae-Yong
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.267-272
    • /
    • 2008
  • Energy harvesting from the vibration through the piezoelectric effect has been studied for powering the small wireless sensor nodes. As piezoelectric uni-morph cantilever structure can transfer low vibration to large displacement, this structure was commonly deployed to harvest electric energy from vibrations. Through our previous results, when stress was applied on the cantilever, stress was concentrated on the certain point of the ceramic of the cantilever. In this study, for miniaturing the energy harvester, we investigated how the size of ceramics and the stress distribution in ceramic affects energy harvester characteristics. Even though the area of ceramic was 28.6 % decreased from $10{\times}35{\times}0.5mm^3$ to $10{\times}25{\times}0.5mm^3$, both samples showed almost same maximum power of 0.45 mW and the electro-mechanical coupling factor ($K_{31}$) of 14 % as well. This result indicated that should be preferentially considered to generate high power with small size energy harvester.

Characterization of Electromechanical Properties and Mass Effect of PZT Microcantilever (MEMS 공정에 의해 제작된 PZT 마이크로 켄틸레버의 전기기계적 거동 및 질량에 대한 공진특성 분석)

  • 황교선;이정훈;박정호;김태송
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.2
    • /
    • pp.116-122
    • /
    • 2004
  • A micromachined self-exited piezoelectric cantilever has been fabricated using PZT(52/48) thin film. For the application to biosensor using antigen-antibody interaction, electromechanical properties such as resonant frequency and quality factor of micromachined piezoelectric cantilever were important factors. Electromechanical properties and resonant behaviors of microfabricated cantilever were simulated by FEA (Finite Element Analysis) using Coventorware$^{TM}$2003. And these characterization of microcantilever were measured by using LDV(Laser Doppler Vibrometer) to compare with FEA data. We present the resonant frequency shift of micromachined piezoelectric cantilevers due to combination of mass loading and change of spring constant by gold deposition. Experimental mass sensitivities of microcantilever were characterized by Au deposition on the backside of microcantilever. Mass sensitivities with $100{\times}300$ ${\mu}{\textrm}{m}$ dimension cantilever from simulation and experimental were 5.56 Hz/ng and 16.8 Hz/ng respectively.y.

Piezoelectric and electromechanical properties of PZT films and PZT microcantilever (PZT 박막의 압전 특성 및 MEMS 기술로 제작된 PZT cantilever의 전기기계적 물성 평가)

  • 이정훈;황교선;윤기현;김태송
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.177-180
    • /
    • 2002
  • Thickness dependence of crystallographic orientation of diol based sol-gel derived PZT(52/48) films on dielectric and piezoelectric properties was investigated The thickness of each layer by one time spinning was about 0.2 $\mu\textrm{m}$, and crack-free films was successfully deposited on 4 inches Pt/Ti/SiO$_2$/Si substrates by 0.5 mol solutions in the range from 0.2 $\mu\textrm{m}$ to 3.8 $\mu\textrm{m}$. Excellent P-E hysteresis curves were achieved without pores or any defects between interlayers. As the thickness increased , the (111) preferred orientation disappeared from 1$\mu\textrm{m}$ to 3 $\mu\textrm{m}$ region, and the orientation of films became random above 3 $\mu\textrm{m}$. Dielectric constants and longitudinal piezoelectric coefficient d$\_$33/, measured by pneumatic method were saturated around the value of about 1400 and 300 pC/N respectively above the thickness of 0.8 7m. A micromachined piezoelectric cantilever have been fabricated using 0.8 $\mu\textrm{m}$ thickness PZT (52/48) films. PZT films were prepared on Si/SiN$\_$x/SiO$_2$/Ta/Pt substrate and fabricated unimorph cantilever consist of a 0.8 fm thick PZT layer on a SiNx elastic supporting layer, which becomes vibration when ac voltage is applied to the piezoelectric layer. The dielectric constant (at 100 kHz) and remanent polarization of PZT films were 1050 and 25 ${\mu}$C/$\textrm{cm}^2$, respectively. Electromechanical characteristics of the micromachined PZT cantilever in air with 200-600 $\mu\textrm{m}$ lengths are discussed in this presentation.

  • PDF

Analysis of Tip Displacement of Cantilever-type Piezoelectric Actuators (외팔보 구조를 갖는 압전 액츄에이터 변위 개선 연구)

  • Yeon, T.H.;Jang, G.H.;Nam, J.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.305-310
    • /
    • 2013
  • This paper analyzes three cantilever-types of piezoelectric actuators of bimorph, unimorph and monomorph in same volume to maximize tip displacement. Tip displacement of each actuator is theoretically derived by using beam theory and numerically verified by FEM. It also investigates the tip displacements of each actuator due to the change of elastic layer. It shows that the piezoelectric actuator of bimorph generates the largest tip displacement among them.

  • PDF