• 제목/요약/키워드: piezoelasticity

검색결과 14건 처리시간 0.02초

Analysis on an improved resistance tuning type multi-frequency piezoelectric spherical transducer

  • Qin, Lei;Wang, Jianjun;Liu, Donghuan;Tang, Lihua;Song, Gangbing
    • Smart Structures and Systems
    • /
    • 제24권4호
    • /
    • pp.435-446
    • /
    • 2019
  • The existing piezoelectric spherical transducers with fixed prescribed dynamic characteristics limit their application in scenarios with multi-frequency or frequency variation requirement. To address this issue, this work proposes an improved design of piezoelectric spherical transducers using the resistance tuning method. Two piezoceramic shells are the functional elements with one for actuation and the other for tuning through the variation of load resistance. The theoretical model of the proposed design is given based on our previous work. The effects of the resistance, the middle surface radius and the thickness of the epoxy adhesive layer on the dynamic characteristics of the transducer are explored by numerical analysis. The numerical results show that the multi-frequency characteristics of the transducer can be obtained by tuning the resistance, and its electromechanical coupling coefficient can be optimized by a matching resistance. The proposed design and derived theoretical solution are validated by comparing with the literature given special examples as well as an experimental study. The present study demonstrates the feasibility of using the proposed design to realize the multi-frequency characteristics, which is helpful to improve the performance of piezoelectric spherical transducers used in underwater acoustic detection, hydrophones, and the spherical smart aggregate (SSA) used in civil structural health monitoring, enhancing their operation at the multiple working frequencies to meet different application requirements.

Unified solutions for piezoelectric bilayer cantilevers and solution modifications

  • Wang, Xianfeng;Shi, Zhifei
    • Smart Structures and Systems
    • /
    • 제16권5호
    • /
    • pp.759-780
    • /
    • 2015
  • Based on the theory of piezoelasticity, the static performance of a piezoelectric bilayer cantilever fully covered with electrodes on the upper and lower surfaces is studied. Three models are considered, i.e., the sensor model, the driving displacement model and the blocking force model. By establishing suitable boundary conditions and proposing an appropriate Airy stress function, the exact solutions for piezoelectric bilayer cantilevers are obtained, and the effect of ambient thermal excitation is taken into account. Since the layer thicknesses and material parameters are distinguished in different layers, this paper gives unified solutions for composite piezoelectric bilayer cantilevers including piezoelectric bimorph and piezoelectric heterogeneous bimorph, etc. For some special cases, the simplifications of the present results are compared with other solutions given by other researches based on one-dimensional constitutive equations, and some amendments have been found. The present investigation shows: (1) for a PZT-4 piezoelectric bimorph, the amendments of tip deflections induced by an end shear force, an end moment or an external voltage are about 19.59%, 23.72% and 7.21%, respectively; (2) for a PZT-4-Al piezoelectric heterogeneous bimorph with constant layer thicknesses, the amendments of tip deflections induced by an end shear force, an end moment or an external voltage are 9.85%, 11.78% and 4.07%, respectively, and the amendments of the electrode charges induced by an end shear force or an end moment are both 1.04%; (3) for a PZT-4-Al piezoelectric heterogeneous bimorph with different layer thicknesses, the maximum amendment of tip deflection approaches 23.72%, and the maximum amendment of electrode charge approaches 31.09%. The present solutions can be used to optimize bilayer devices, and the Airy stress function can be used to study other piezoelectric cantilevers including multi-layered piezoelectric cantilevers under corresponding loads.

9 절점 가정변형률 쉘 요소를 이용한 전기-기계연성 시스템 해석 (Analysis of coupled electro-mechanical system by using a nine-node assumed strain shell element)

  • 이상기;박훈철;윤광준;조창민
    • 한국항공우주학회지
    • /
    • 제31권2호
    • /
    • pp.25-34
    • /
    • 2003
  • 본 논문에서는 압전 작동기가 삽입되거나 부착된 구조를 해석하기 위하여, 기존의 기계적 문제만을 고려한 9 절점 가정변형률 쉘 요소의 정식화를 전기-기계연성 문제에도 적용 가능하도록 확장하였다. 본 쉘요소는 잠김현상을 완화할 수 있고, 두께변형을 고려하기 위해 각 절점에서 6개의 자유도를 갖는 특징이 있다. 전기-기계 자유도들은 구성방정식을 이용하여 연계시켰다. 변위장은 요소의 전체 두께방향으로 선형으로 가정하였고, 전기적 포텐셜은 각각의 압전재료층에 대해 선형으로 가정하였다. 확장된 정식화에 기초한 유한요소 프로그램을 개발하였고, 수치예제들을 통해 프로그램을 검증하였다. 개발된 쉘 요소에 의한 결과는 다른 참고문헌들의 결과들과 잘 일치하였다.

Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform Graphene platelet with magnetorheological fluid core

  • Eyvazian, Arameh;Hamouda, Abdel Magid;Tarlochan, Faris;Mohsenizadeh, Saeid;Dastjerdi, Ali Ahmadi
    • Steel and Composite Structures
    • /
    • 제33권6호
    • /
    • pp.891-906
    • /
    • 2019
  • This study considers the instability behavior of sandwich plates considering magnetorheological (MR) fluid core and piezoelectric reinforced facesheets. As facesheets at the top and bottom of structure have piezoelectric properties they are subjected to 3D electric field therefore they can be used as actuator and sensor, respectively and in order to control the vibration responses and loss factor of the structure a proportional-derivative (PD) controller is applied. Furthermore, Halpin-Tsai model is used to determine the material properties of facesheets which are reinforced by graphene platelets (GPLs). Moreover, because the core has magnetic property, it is exposed to magnetic field. In addition, Kelvin-Voigt theory is applied to calculate the structural damping of the piezoelectric layers. In order to consider environmental forces applied to structure, the visco-Pasternak model is assumed. In order to consider the mechanical behavior of structure, sinusoidal shear deformation theory (SSDT) is assumed and Hamilton's principle according to piezoelasticity theory is employed to calculate motion equations and these equations are solved based on differential cubature method (DCM) to obtain the vibration and modal loss factor of the structure subsequently. The effect of different factors such as GPLs distribution, dimensions of structure, electro-magnetic field, damping of structure, viscoelastic environment and boundary conditions of the structure on the vibration and loss factor of the system are considered. In order to indicate the accuracy of the obtained results, the results are validated with other published work. It is concluded from results that exposing magnetic field to the MR fluid core has positive effect on the behavior of the system.