• Title/Summary/Keyword: piezo-capacitive

Search Result 11, Processing Time 0.021 seconds

Study on High-Efficiency Driving of a Piezo Device Using Voltage Inversion Circuit (전압 극성 전환을 통한 피에조 소자의 에너지 회수형 구동 기법 연구)

  • Park, Han-Bin;Park, Jin-Ho;Hong, Sun-Ki;Kang, Taesam
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1843-1847
    • /
    • 2012
  • Piezo devices have large power density and simple structure. They can generate larger force than the conventional actuators. It has also wide bandwidth with fast response in a compact size. Thus the piezo devices are expected to be used widely in the future for small actuators with fast response time and large actuating force. However, the piezo actuators need high voltage with high driving current due to their large capacitive property. In this paper, we propose a simple method to drive piezo devices using voltage inversion circuit with coil inductance. Experiments with real circuit demonstrates that the proposed scheme can improve the energy efficiency very much.

A Study on Characteristics and Driving Techniques of Energy Recovery Type Inverter for Piezo Actuator Drive (피에조 액츄에이터 구동용 에너지 회수형 인버터의 특성과 구동 기법 연구)

  • Hong, Sun-Ki;Lee, Jung-Seop;Byeon, Nam-Hee;Na, Yoo-Cheong;Kang, Tae-Sam
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1095-1100
    • /
    • 2013
  • Piezo devices have large power density and simple structure compared with conventional electrical motors. Thus they can generate larger forces than the conventional actuators with small size. Their resopnses to commands are also very fast and thus the bandwidths are very wide. Thus the piezo devices are expected to be used widely in the future for actuating devices requiring fast response and large actuating force with small size. However, the piezo actuators need high voltage with high driving current due to their large capacitive property. In this paper, proposed is a simple method to drive piezo devices using voltage inversion circuit with coli inductance. The coil inductance carries the charges in the piezo device to the opposite side, inverting the polarity of the applied voltage, thus saving the power to drive the device with AC voltages. Experiments with real circuit demonstrates that the proposed scheme can improve the energy efficiency very much.

Multiple-Mode Structural Vibration Control Using Negative Capacitive Shunt Damping

  • Park, Chul-Hue;Park, Hyun-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1650-1658
    • /
    • 2003
  • This paper deals with a novel shunt circuit, which is capable of suppressing multimode vibration amplitudes by using a pair of piezoceramic patches. In order to describe the characteristic behaviors of a piezoelectric damper connected with a series and a parallel resistor-negative capacitor branch circuit, the stiffness ratio and loss factor with respect to the non-dimensional frequency are considered. The mechanism of the shunt damper is also described by considering a shunt voltage constrained by shunt impedance. To obtain a guideline model of the piezo/beam system with a negative capacitive shunting, the governing equations of motion are derived through the Hamilton's principle and a piezo sensor equation as well as a shunt-damping matrix is developed. The theoretical analysis shows that the piezo/beam system combined with a series and a parallel resistor-negative capacitor branch circuit developed in this study can significantly reduce the multiple-mode vibration amplitudes over the whole structural frequency range.

Finite Element Analysis of Capacitive pressure sensor with Touch mode for improving non-linearity (비선형성의 개선을 위한 Capacitive pressure sensor의 Touch mode 방식에 대한 유한요소 해석)

  • Kim, Do-Hyung;O, Jea-Geun;Choi, Bum-Kyoo
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.2087-2089
    • /
    • 2004
  • Capacitive pressure sensor는 Piezo type sensor에 비해 온도의 영향이 적어 공업계측, 전기용품 등 그 용도가 다양하여 폭넓게 사용되어지고 있지만, 측정값의 비선형성이 존재하여 측정값에 대한 신뢰도가 떨어지는 단점이 있다. 본 연구에서는 기존 capacitive pressure sensor의 비선형적 output을 개선하기 위한 방법으로 touch mode capacitive pressure sensor를 제안하였다. 또한, 실제 Device제작에 앞서 FEM 해석을 수행하였다. 2mm X 2mm 크기의 diaphragm, $25{\mu}m$의 두께, $20{\mu}m$의 gap을 갖는 Sensor를 Simulation하였으며 설계 변수를 추출하여 각각의 설계변수에 대한 해석을 실시하였다. 그 결과 15.2psi${\sim}$31psi의 영역에서 8.58pF${\sim}$54.31pF의 capacitance가 선형적으로 나타나는 sensor임을 확인하였다.

  • PDF

A Piezo-driven Ultra-precision Stage for Alignment Process of a Contact-type Lithography (접촉식 리소그라피의 정렬공정을 위한 압전구동 초정밀 스테이지)

  • Choi, Kee-Bong;Lee, Jae-Jong;Kim, Gee-Hong;Lim, Hyung-Jun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.756-760
    • /
    • 2011
  • This paper proposed an alignment stage driven by piezo actuators for alignment process of a contact-type lithography. Among contact-type lithography processes, an UV-curable nanoimprint process is an unique process to be able to align patterns on upper and lower layers. An alignment stage of the UV-curable nanoimprint process requires nano-level resolution as well as high stiffness to overcome friction force due to contact moving. In this paper, the alignment stage consists of a compliant mechanism using flexure hinges, piezo actuators for high force generation, and capacitive sensors for high-resolution measurement. The compliant mechanism is implemented by four prismatic-prismatic compliant chains for two degree-of-freedom translations. The compliant mechanism is composed of flexure hinges with high stiffness, and it is directly actuated by the piezo actuators which increases the stiffness of the mechanism, also. The performance of the ultra-precision stage is demonstrated by experiments.

Study of Output Characteristics of Pressure T/D using Piezo Capacitor Type (Piezo-Capacitor방식 입력 Transducer와 출력특성 고찰)

  • Lee, Seong-Jae;Yoo, Byung-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.245-246
    • /
    • 2009
  • 정전용량형 후막 스트레인 게이지(piezocapacitive thick film strain gage)는 세라믹 ($Al_2O_3$)을 주 원료로 하는 지지대(약 5mm)와 다이어프램(약 $300{\mu}m$) 그리고 가드 링으로 구성된다. 전극 판은 도전성 페이스트를 이용하여 지지대와 다이어프램에 형성되었으며 극판 사이에는 유전체 메이스트를 사용하여 스크린 인쇄로 후막을 형성하였다. 극판 사이의 가드 링 두께는 약 $30{\mu}m$정도로 다이어프램의 변위 최대값을 유지시키는 데 필요한 간격이다. 따라서 정전용랑형 후막 스트레인 게이지는 지지대를 중심으로 다이어프램에 압력 (0.5~1.0bar)이 인가될 때 변위를 발생시키면서 커패시터 값이 압력의 크기에 따라 비례 특성을 가지고 변화하는 것을 이용한 것이다. 압력이 없을때 초기값은 35pF~40pF 정도이고 정격압력의 최대치를 인가시켰을 때 약 55pF~55p를 나타내었다.

  • PDF

Multiple-Mode Vibration Control Using Piezoelectric Shunted Actuator (압전 분기회로를 이용한 다중모드제어)

  • 박철휴
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.202-207
    • /
    • 2002
  • This paper deals with a novel shunted actuator, which has a capability to suppress multi-mode vibration amplitudes by using a pair of piezoceramic patches. In order to describe the characteristic behaviors of shunted dampers connected with a series and a parallel resistor-negative capacitive branch circuit, the stiffness ratio and loss factor with respect to the non-dimensional frequency are considered. To obtain a guideline model of a piezo/beam system connected with a series and a parallel resistor-negative capacitor branch circuit, the governing equations of motion is derived through Hamiltons principle and a piezo sensor equation as well as a shunt damping matrix is developed. The theoretical analysis shows that the shunted actuator developed in this study can significantly reduce multiple-mode vibration amplitudes simultaneously over the whole structural frequency range.

  • PDF

Development of Flexure Applied Bond head for Die to Wafer Hybrid Bonding (Die to Wafer Hybrid Bonding을 위한 Flexure 적용 Bond head 개발)

  • Jang, Woo Je;Jeong, Yong Jin;Lee, Hakjun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.171-176
    • /
    • 2021
  • Die-to-wafer (D2W) hybrid bonding in the multilayer semiconductor manufacturing process is one of wafer direct bonding, and various studies are being conducted around the world. A noteworthy point in the current die-to-wafer process is that a lot of voids occur on the bonding surface of the die during bonding. In this study, as a suggested method for removing voids generated during the D2W hybrid bonding process, a flexible mechanism for implementing convex for die bonding to be applied to the bond head is proposed. In addition, modeling of flexible mechanisms, analysis/design/control/evaluation of static/dynamics properties are performed. The proposed system was controlled by capacitive sensor (lion precision, CPL 290), piezo actuator (P-888,91), and dSpace. This flexure mechanism implemented a working range of 200 ㎛, resolution(3σ) of 7.276nm, Inposition(3σ) of 3.503nm, settling time(2%) of 500.133ms by applying a reverse bridge type mechanism and leaf spring guide, and at the same time realized a maximum step difference of 6 ㎛ between die edge and center. The results of this study are applied to the D2W hybrid bonding process and are expected to bring about an effect of increasing semiconductor yield through void removal. In addition, it is expected that it can be utilized as a system that meets the convex variable amount required for each device by adjusting the elongation amount of the piezo actuator coupled to the flexible mechanism in a precise unit.

Nano and micro structures for label-free detection of biomolecules

  • Eom, Kil-Ho;Kwon, Tae-Yun;Sohn, Young-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.403-420
    • /
    • 2010
  • Nano and micro structure-based biosensors are promising tool for label-free detection of biomolecular interactions with great accuracy. This review gives a brief survey on nano and micro platforms to sense a variety of analytes such as DNA, proteins and viruses. Among incredible nano and micro structure for bio-analytical applications, the scope of this paper will be limited to micro and nano resonators and nanowire field-effect transistors. Nanomechanical motion of the resonators transducers biological information to readable signals. They are commonly combined with an optical, capacitive or piezo-resistive detection systems. Binding of target molecule to the modified surface of nanowire modulates the current of the nanowire through electrical field-effect. Both detection methods have advantages of label-free, real-time and high sensitive detection. These structures can be extended to fabricate array-type sensors for multiplexed detection and high-throughput analysis. The biosensors based on these structures will be applied to lab-on-a-chip platforms and point-of-care diagnostics. Basic concepts including detection mechanisms and trends in their fields will be covered in this review.

A low cost miniature PZT amplifier for wireless active structural health monitoring

  • Olmi, Claudio;Song, Gangbing;Shieh, Leang-San;Mo, Yi-Lung
    • Smart Structures and Systems
    • /
    • v.7 no.5
    • /
    • pp.365-378
    • /
    • 2011
  • Piezo-based active structural health monitoring (SHM) requires amplifiers specifically designed for capacitive loads. Moreover, with the increase in number of applications of wireless SHM systems, energy efficiency and cost reduction for this type of amplifiers is becoming a requirement. General lab grade amplifiers are big and costly, and not built for outdoor environments. Although some piezoceramic power amplifiers are available in the market, none of them are specifically targeting the wireless constraints and low power requirements. In this paper, a piezoceramic transducer amplifier for wireless active SHM systems has been designed. Power requirements are met by two digital On/Off switches that set the amplifier in a standby state when not in use. It provides a stable ${\pm}180$ Volts output with a bandwidth of 7k Hz using a single 12 V battery. Additionally, both voltage and current outputs are provided for feedback control, impedance check, or actuator damage verification. Vibration control tests of an aluminum beam were conducted in the University of Houston lab, while wireless active SHM tests of a wind turbine blade were performed in the Harbin Institute of Technology wind tunnel. The results showed that the developed amplifier provided equivalent results to commercial solutions in suppressing structural vibrations, and that it allows researchers to perform active wireless SHM on moving objects with no power wires from the grid.