• Title/Summary/Keyword: pier strength.

Search Result 109, Processing Time 0.027 seconds

Seismic performance of precast assembled bridge piers with hybrid connection

  • Shuang, Zou;Heisha, Wenliuhan;Yanhui, Liu;Zhipeng, Zhai;Chongbin, Zhang
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.407-417
    • /
    • 2023
  • Precast assembled bridge piers with hybrid connection (PASP) use both tendons and socket connections. To study the seismic performance of PASP, a full-scale in-situ test was performed based on an actual bridge project. The elastic-plastic fiber model of PASP was established using finite element software, and numerical analyses were performed to study the influence of prestress degree and socket depth on the PASP seismic performance. The results show that the typical failure mode of PASP under horizontal load is bending failure dominated by concrete cracking at the joint between the column and cushion cap. The cracking of the pier concrete and opening of joints depend on the prestress degree and socket depth. The prestressing tendons and socket connection can provide enough ductility, strength, restoration capability, and bending strength under small horizontal displacements. Although the bearing capacity and post yield stiffness of the pier can be improved to some extent by increasing the prestressing force, ductility is reduced, and residual deformation is increased. Overall, there are reasonable minimum socket depths to ensure the reliability of the socket connection.

Static Behavior Analysis of Spillway Pier for Dam Safety Evaluation (댐 안전성 평가를 위한 여수로 피어부의 정적 거동 분석)

  • Jang, Bong-Seok;Lim, Jeong-Yeul;Lee, Myung-Kue;Lee, Hyung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.11-18
    • /
    • 2007
  • Seismic performance evaluation for dam safety evaluation has been continually conducted. However the behavior analysis for the spillway pier which is known as the weak point of dam is seldom reported. Therefore, this study performed the static loading tests for a prototype structures as elementary tests for the final seismic performance evaluation of dam safety. The prototype of pier structure has 1/20 scale and it adopts to strength model. And cracking loads and ultimate loads of real structures are calculated through numerical analysis using commercial FEM program (ABAQUS). The results of this study show some difference between the results of prototype tests and the results of numerical analysis. Also, the ultimate and cracking loads can be estimated through the prototype loading test and numerical analysis.

Sensitivity analysis of the plastic hinge region in the wall pier of reinforced concrete bridges

  • Babaei, Ali;Mortezaei, Alireza;Salehian, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.675-687
    • /
    • 2019
  • As the bridges are an integral part of the transportation network, their function as one of the most important vital arteries during an earthquake is fundamental. In a design point of view, the bridges piers, and in particular the wall piers, are considered as effective structural elements in the seismic response of bridge structures due to their cantilever performance. Owing to reduced seismic load during design procedure, the response of these structural components should be ductile. This ductile behavior has a direct and decisive correlation to the development of plastic hinge region at the base of the wall pier. Several international seismic design codes and guidelines have suggested special detailing to assure ductile response in this region. In this paper, the parameters which affect the length of plastic hinge region in the reinforced concrete bridge with wall piers were examined and the sensitivity of these parameters was evaluated on the length of the plastic hinge region. Sensitivity analysis was accomplished by independently variable parameters with one standard deviation away from their means. For this aim, the Monte Carlo simulation, tornado diagram analysis, and first order second moment method were used to determine the uncertainties associated with analysis parameters. The results showed that, among the considered design variables, the aspect ratio of the pier wall (length to width ratio) and axial load level were the most important design parameters in the plastic hinge region, while the yield strength of transverse reinforcements had the least effect on determining the length of this region.

Experimental Evaluation for Seismic Performance of RC Bridge Piers with FRP Confinement (FRP 횡보강근을 이용한 RC 교각의 내진성능 평가 실험)

  • 정영수;박진영;박창규;서진원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.377-384
    • /
    • 2003
  • Recently, there are much concerns about new and innovative transverse materials which could be used instead of conventional transverse steel in reinforced concrete bridge piers. FRP materials could be substituted for conventional transverse steel because of their sufficient strength, light weight, easy fabrication, and useful applicability to any shapes of pier sections, such as rectangular or circular sections. The objective of this research is to evaluate the seismic performance of reinforced concrete bridge pier specimens with FRP transverse reinforcement by means of the Quasi-Static test. In the first task, test columns were made using FRP rope, but these specimens appeared to fail at low displacement ductility levels due to insufficient confinement of strand extension itself. Therefore, the second task was to evaluate the seismic performance of test specimens transversely confined with FRP band. Although FRP banded specimens showed lower seismic performance than the specimen with spiral reinforcing steel, it satisfied with the response modification factor, 3, required for the single column of Korea bridge roadway design code. It was concluded that FRP band could be efficiently substituted for conventional reinforcing steel.

  • PDF

Extension of theoretical approaches for the shear strength of reinforced concrete beams with corroded stirrups

  • Pier Paolo Rossi;Nino Spinella
    • Computers and Concrete
    • /
    • v.31 no.1
    • /
    • pp.33-52
    • /
    • 2023
  • This paper proposes and validates the extension of two models, previously formulated for the evaluation of the shear strength of reinforced concrete members with un-corroded reinforcements, to the case of beams with corroded stirrups. These extended models are based on the plasticity theory (this model has been proposed in the past by one of the authors) and on the simplified modified compression field theory. The response of these models is compared with that of the compression chord capacity model, which has recently been embedded with modifications that simulate the effects of steel corrosion. These latter modifications are first discussed and then introduced into the other two models. An existing database of slender and non-slender beams tested in laboratory by other researchers is revised and improved. Finally, all the considered models are applied to the selected specimens and a comparison is drawn between the shear strength resulting from the considered models and the shear strength resulting from the laboratory tests. The effects of corrosion on some important parameters of the ultimate shear response of the reinforced concrete beams are also discussed.

An Experimental Study on the Seismic Behavior of Box Type Concrete-Filled Steel Piers (박스형 강합성 교각의 내진 성능 평가를 위한 실험적 연구)

  • 서진환
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.381-388
    • /
    • 2000
  • The steel piers and the concrete-filled steel piers, in spite of reasonable strength, high ductility, small section, and fast construction, have not been considered as the alternatives to the RC piers even in the highly populated urban area where aseismic safety, limited space and fast construction are indispensably required. In this paper, a steel pier and 4 box type concrete-filled steel piers were tested with the quasi-static cyclic loading to estimate the ductility and the strength. Additional devices such as base rib, turn-buckle, and anchor bolted added at the to increase the ductility with minimum additional cost. The result showed that the concrete filled-in steel piers had higher energy absorbtion and strength than steel piers had, but also showed that slight overlooking in the design and fabrication could lead to the abrupt fracture just after small local buckling at the bottom.

  • PDF

Experiments on the Composite Action of Steel Encased Composite Column (강재매입형 합성기둥의 합성작용에 관한 실험)

  • Jung In Keun;Min Jin;Shim Chang Su;Chung Young Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.485-488
    • /
    • 2004
  • Steel encased composite columns have been used for buildings and piers of bridges. Since column section for pier is relatively larger than that of building columns, economical steel ratio need to be investigated for the required performance. Composite action between concrete and embedded steel sections can be obtained by bonding and friction. However, the behavior. of the column depends on the load introduction mechanism. Compression can be applied to concrete section, steel section and composite section. In this paper, experiments on shear strength of the steel encased composite column were performed to study the effect of confinement by transverse reinforcements, mechanical interlock by holes, and shear connectors. Shear strength obtained from the tests showed considerably higher than the design value. Confinement, mechanical interlock and stud connectors increased the shear strength and these values can be used effectively to obtain composite action of SRC columns.

  • PDF

Seismic Response Evaluation of Composite Steel-Concrete Box Girder Bridge according to Aging Effect of Piers (교각의 노후도 영향에 따른 강합성 상자형 거더교의 지진응답 평가)

  • Shin, Soobong;Hong, Ji-Yeong;Moon, Jiho;Song, Jong-Keol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.319-329
    • /
    • 2020
  • Among the bridges used in Korea, those that are more than 30 years old account for approximately 11% of the total bridges. Therefore, developing a seismic performance-evaluation method is necessary by considering the bridge age. Three composite steel-concrete box girder bridges with port, elastic-rubber, and lead-rubber bearings were selected, and a structural analysis model was developed using the OpenSEESs program. In this study, pier aging was reflected by the reduction in the area of the longitudinal and transverse rebars. Four conditions of 5%, 10%, 25%, and 50% in the degree of pier aging were used. As input earthquakes, 40 near-fault and far-field earthquakes were used, and the maximum displacement and maximum shear-force responses of the piers were obtained and compared. The result shows that as the aging degree increases, the pier strength decreases. Therefore, the pier displacement response increases. To analyze the effects of displacement response and shear resistance, displacement ratio Dratio and shear-force ratio Fratio were evaluated. The older the sample bridge is, the greater is the tendency of Dratio to increase and the smaller is the tendency of Fratio to decrease.

A Seismatic Performance Analysis of Circular RC Bridge Piers I. Evaluation of Influence Parameters of Confinement Steel Ratio (원형 철근콘크리트 교각의 내진성능 I. 심부구속철근비 영향 변수 평가)

  • Lee Dae-Hyoung;Park Chang-Kyu;Kim Hyun-Jun;Chung Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.603-611
    • /
    • 2005
  • For the establishment of rational seismic design code for RC (reinforced concrete) bridge pier, this paper has analyzed the seismic code of RC bridge pier specified in )veil-known codes such as KHBDS (Korea Highway Bridge Design Specification), AASHTO Standard, ATC-32, Eurocode 8, NZS 3101, etc. So as to secure aseismic ductility of RC pier, transverse confinement steel ratios of those codes have been examined together with other design parameters such as strength of concrete and reinforcing steel, axial force ratio, aspect ratio, longitudinal steel ratio, etc. However, there has been arisen a doubt for the validity of those parameters. Thus, the objective of this study is to quantitatively evaluate the validity of design parameter of each code on the experimental seismic ductility for about 80 test specimens. It was concluded from this study that the axial force ratio is a dominant factor for the seismic displacement ductility. Therefore, it Is desirable that the axial force ratio be further taken into account in the corresponding seismic design formula of RC bridge pier in current KHBDS.

Simplified Seismic Response Analysis of a RC Bridge (철근콘크리트 교량의 단순화된 내진응답해석)

  • 이도형;전종수;박대효
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.949-954
    • /
    • 2003
  • In this paper, simplified modeling approach describing the hysteretic behavior of reinforced concrete columns is discussed. The inelastic response of a reinforced concrete column or pier subjected to cyclic deformation reversals or earthquake ground motion is evaluated by use of lumped hysteretic representation. For this purpose, the hystertic model under axial force variation is developed and implemented into a nonlinear finite element analysis program. The analytical predictions obtained with the new formulation are compared with test results and reveal accuracy and applicability in terms of strength and stiffness. In addition, comparison between results with and without axial force variation stresses the importance of the proposed approach.

  • PDF