• Title/Summary/Keyword: phytoplankton ecosystem

Search Result 157, Processing Time 0.029 seconds

Summer Water Quality Management by Ecological Modelling in Ulsan Bay (생태계 모델을 이용한 울산만의 하계 수질관리)

  • Park, Sung-Eun;Hong, Sok-Jin;Lee, Won-Chan;Jung, Rae-Hong;Cho, Yoon-Sik;Kim, Hyung-Chul;Kim, Dong-Myung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • Numerical study on coastal water quality management was conducted to examine the response of summer water quality to the flow into the sea of land based pollution load in Ulsan Bay, Korea The abatement of pollution load. from point sources of land was estimated on the basis of Korean coastal water quality standard using an ecosystem model. The results of the ecological model simulation showed that COD values in the inner part of the bay were greater than 280mg/L, and exceeded the grade III limit of Korean coastal water quality standard 30% of all land based pollution loads or organic and inorganic material loads from point sources should be cut down to keep the COD levels below 2mg/L. As environmental carrying capacity was estimated to be 7,193kgCOD/day to keep the COD levels below 2mg/L in Ulsan Bay, 3,083kgCOD/day of land based organic loads should be reduced. The phytoplankton blooms have occurred in the Teahwa river mouth or estuary repetitively, so it is important to control land based nutrients loads for removal of autochthonous organic loads around Ulsan Bay.

A Study on the Eco-Toxicity of Silicone-Based Antifoaming Agents Discharging into Marine Environments (해양으로 배출되는 실리콘계 소포제의 생태독성 연구)

  • Kim, Tae Won;Kim, Young Ryun;Park, MiOk;Jeon, MiHae;Son, Min Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.1
    • /
    • pp.81-88
    • /
    • 2019
  • In order to understand the effects of the main components of antifoaming agents on the marine benthic ecosystem when silicone-based antifoaming agents are discharged into marine environments, eco-toxicity testing was performed on silicone and alcohol-based antifoaming agent by using benthic amphipod (Monocorophium acherusicum) and luminescent bacteria (Vibrio fischeri). The toxic effects of Polydimethylsiloxane (PDMS) as a main component of silicone-based antifoaming agents on aquatic organisms were also researched. In the results of the eco-toxicity test, luminescent bacteria showed a maximum of 9 times more toxic effects than benthic amphipod for alcohol-based antifoaming agents, and silicone-based antifoaming agents showed a maximum of 400 times more toxic effects than alcohol-based. The $LC_{50}$ and $EC_{50}$ values of PDMS ranged from 10 to $44,500{\mu}g/L$ in phytoplankton, invertebrate, and fish. In the results of applying PBT (P: persistency, B: bioaccumulation, T: toxicity) characteristics as an index showing the qualitative characteristics of PDMS, persistency (P) and bioaccumulation (B) were confirmed. Thus, when PDMS is discharged to marine environments, it could accumulate in the upper trophic level through bioaccumulation and the food chain, which could have negative effects on benthic organisms. The results of this study may be used for objective and scientific risk assessment, considering the major components of antifoaming agents when investigating the effects of various discharged antifoaming agents in marine ecosystem.

Seasonal Difference in Linear Trends of Satellite-derived Chlorophyll-a in the East China Sea (위성 해색자료에서 추정한 동중국해 클로로필 선형경향의 계절별 차이)

  • Son, Young Baek;Jang, Chan Joo;Kim, Sang-Hyun
    • Ocean and Polar Research
    • /
    • v.35 no.2
    • /
    • pp.147-155
    • /
    • 2013
  • The purpose of this study is to investigate seasonal difference in linear trends in satellite-derived chlorophyll-a concentration (Chl-a) and their related environmental changes in the South Sea of Korea (SSK) and East China Sea (ECS) for recent 15 years (Jan. 1998~Dec. 2012) by analyzing climatological data of Chl-a, Rrs(555), sea surface wind (SSW) and nutrient. A linear trend analysis of Chl-a data reveals that, during recent 15 years, the spring bloom was enhanced in most of the ECS, while summer and fall blooms were weakened. The increased spring (Mar. - May) Chl-a was associated with strengthened winter (Dec. - Feb.) wind that probably provided more nutrient into the upper ocean from the deep. The causes of decreased summer (Jun. - Aug.) Chl-a in the northern ECS were uncertain, but seemed to be related with the nutrient limitation. Recently (after 2006), low-salinity Changjiang diluted water in the south of Jeju and the SSK had lower phosphate that caused increase in N/P ratio with Chl-a decrease. The decreased fall (Sep. - Nov.) Chl-a was associated with weakened wind that tends to entrain less nutrient into the upper ocean from the deep. This study suggests that phytoplankton in the ECS differently changes in response to environmental changes depending on season and region.

A Numerical Prediction of Nutrient circulation in Hakata Bay by Sediment-Water Ecological Model(SWEM) (수-저질생태계모델에 의한 박다만의 물질순환예측)

  • Lee In-Cheol;Ryu Cheong-Ro
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.2
    • /
    • pp.3-14
    • /
    • 2001
  • In order to predict nutrient circulation in Hakata bay, we have developed an ecosystem model named the Sediment-Water Ecological Model (SWEM). The model, consisting of two sub-models with hydrodynamic and biological models, simulates the circulation process of nutrient between water column and sediment, such as nutrient regeneration from sediments as well as ecological structures on the growth of phytoplankton and zooplankton. This model was applied to prevent eutrophication in Hakata bay, located in western Japan. The calculated results of the tidal currents by the hydrodynamic model showed good agreement with the observed currents. Moreover, SWEM simulated reasonably well the seasonal variations of water quality, and reproduced spatial heterogeneity of water quality in the bay, observed in the field. According to the simulation of phosphorus circulation at the head of the bay, it was predicted that the regeneration process of phosphorus across the sediment-water interface had a strong influence on the water quality of the bay.

  • PDF

Key Technologies for Floating Type Artificial Upwelling System to Strengthen Primary Production (해역 기초생산력 증대를 위한 부유식 인공용승시스템 요소기술)

  • Jung, Dong-Ho;Lee, Ho-Saeng;Kim, Hyeon-Ju;Moon, Deok-Soo;Lee, Seung-Won
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.78-83
    • /
    • 2012
  • The abundant nutrients contained in deep seawater are delivered by natural upwellings from the deep sea to the surface sea. However, the natural upwelling phenomenon is limited to specific areas of the sea; in other areas, the thermocline separates the surface sea from the lower layer. Thus, the surface layer is often deficient in nutritive salts, causing the deterioration of its primary productivity and ultimately leading to an imbalance in the marine ecosystem. Without a consistent supply of nitrogenous nutritive salts, they are absorbed by phytoplankton, resulting in a considerable problem in primary productivity. To solve this issue, a floating type of artificial upwelling system is suggested to artificially pump up, distribute, and diffuse deep seawater containing rich nutritive salts. The key technologies for developing such a floating artificial upwelling system are a floating offshore structure with a large diameter riser, self-supplying energy system, density current generating system, method for estimating the emission and absorption of CO2, and way to evaluate the primary production variation. Strengthening the primary production of the sea by supplying deep seawater to the sea surface will result in a sea environment with abundant fishery resources.

Changes of Fatty Acid composition During Dispecific culture of Scrippsiella trochoidea a Dinoflagellate and Pseudomonas spp. marine Bacteria (적조와편모조 Scrippsiella trochoidea와 해양세균 Pseudomonas spp.의 동시배양 시 지반산 조성의 변화)

  • 임월애;김학균
    • 한국해양학회지
    • /
    • v.28 no.3
    • /
    • pp.186-191
    • /
    • 1993
  • Scrippsiella trochoidea is a dinoflagellate responsible for red tide in early spring in southern coastal water. Marine bacteria appear to exert critical roles on the development and decay of phytoplankton bloom in marine ecosystem. It is likely that marine bacteria, Pseudomonas spp., share some metabolic processes with S. trochoidea. To investigate interactions between S. trochoidea and Pseudomonas spp. directly, cysts of S. trochoidea isolated from the bottom mud in Masan Bay have been germinated and cultured. From the S. trochoidea cultured medium, we have isolated Pseudomonas spp., a dominant and cultured. From the S. trochoidea cultured medium, we have isolated Pseudomonas spp., a dominant species. Both of Pseudomonas spp. and S trochoidea have been simultaneously inoculated into the sterilized sea water and cultured to examine the change of fatty acids. The major fatty acids that showed increases in composition during the dispecific culture were $C_{18:0/},{\;}C_{20:5}{\;}and{\;}C_{22:5}$ in S. trochoidea, and in Pseudomonas spp. Especially, $C_{20:5}{\;}and{\;}C_{18:0}$ were increased in S. trochoidea but decreased in Pseudomonas spp. These results strongly suggest that two species share some processes in their fatty acid metabolism.

  • PDF

Relationship among Degree of Time-delay, Input Variables, and Model Predictability in the Development Process of Non-linear Ecological Model in a River Ecosystem (비선형 시계열 하천생태모형 개발과정 중 시간지연단계와 입력변수, 모형 예측성 간 관계평가)

  • Jeong, Kwang-Seuk;Kim, Dong-Kyun;Yoon, Ju-Duk;La, Geung-Hwan;Kim, Hyun-Woo;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.161-167
    • /
    • 2010
  • In this study, we implemented an experimental approach of ecological model development in order to emphasize the importance of input variable selection with respect to time-delayed arrangement between input and output variables. Time-series modeling requires relevant input variable selection for the prediction of a specific output variable (e.g. density of a species). Inadequate variable utility for input often causes increase of model construction time and low efficiency of developed model when applied to real world representation. Therefore, for future prediction, researchers have to decide number of time-delay (e.g. months, weeks or days; t-n) to predict a certain phenomenon at current time t. We prepared a total of 3,900 equation models produced by Time-Series Optimized Genetic Programming (TSOGP) algorithm, for the prediction of monthly averaged density of a potamic phytoplankton species Stephanodiscus hantzschii, considering future prediction from 0- (no future prediction) to 12-months ahead (interval by 1 month; 300 equations per each month-delay). From the investigation of model structure, input variable selectivity was obviously affected by the time-delay arrangement, and the model predictability was related with the type of input variables. From the results, we can conclude that, although Machine Learning (ML) algorithms which have popularly been used in Ecological Informatics (EI) provide high performance in future prediction of ecological entities, the efficiency of models would be lowered unless relevant input variables are selectively used.

Experimental Study on Effect on Prey Survival by Juvenile Fish Shelter (JFS) under Pressure by Piscivorous Fishes (포식압력 하에 치어 보호 구조물이 피식자의 생존율에 미치는 영향에 관한 실험적 연구)

  • Ahn, Chang Hyuk;Joo, Jin Chul;Lee, Saeromi;Ahn, Hosang;Park, Jae-Roh;Song, Ho Myeon
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.6
    • /
    • pp.746-753
    • /
    • 2013
  • The aim of this study was to evaluate artificial fish shelter, which was known to increase prey survival and expand habitat space to improve species diversity and fish communities in a freshwater ecosystem. The experiment was performed at an outdoor test-bed for three months from 2011 by comparing the responses to adjustments in the volume of the artificial patch (juvenile fish shelter, JFS) in the control and experimental groups. Analysis of the environmental conditions over two periods (Period1 ~ 2) showed minor differences in the physichemical characteristics of water quality, phytoplankton, and zooplankton biomass, thus, allowing comparative analysis of feeding ecology. However, high water temperature conditions in Period1 ($25.6{\pm}2.0^{\circ}C$), affected the predation activity of the piscivorous fishes, Coreoperca herzi (C. herzi, size $89{\pm}4mm$). Survival rates of the prey fishes, Rhynchocypris oxycephalus (R. oxycephalus, size $29{\pm}1mm$), improved as the patch volume increased and were higher than those of the control group by 35.9 ~ 46.7%. Analysis showed that JFS reduced the chances of predator-prey encounter, and thereby minimized prey vulnerability.

Bacterial Abundances and Enzymatic Activities under Artificial Vegetation Island in Lake Paldang (팔당호에 설치된 인공식물섬에서의 세균 수와 체외효소 활성도의 변화)

  • Byeon, Myeong-Seop;Yoo, Jae-Jun;Kim, Ok-Sun;Choi, Seung-Ik;Ahn, Tae-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.4 s.100
    • /
    • pp.266-272
    • /
    • 2002
  • For analyzing function of a microbial ecosystem which was created under the artificial vegetation island (AVI) installed at Lake Paldang, zooplankton and bacterial numbers and exoenzyme activities (${\beta}$-glucosidase and phosphatase) were measured biweekly from 3 November 2()()1 to 20 April 2002 at AVI site and control site. Under the AVI, the water quality was worse than control site in term of comparing the environmental parameters. But, zooplankton number of AVI site was 25 times higher than that of control site. Respiratory active bacterial numbers were 3-8 times higher at AVI site. In addition, enzymatic activities were higher at AVI site than those of control site. These results suggest that the zooplankton-phytoplankton-bacteria relationships are closely coupled with each other and organic materials are eliminated by respiration of zooplankton and bacterial activities.

Implications of Deep Nitrite in the Ulleung Basin (울릉 분지 저층수의 아질산염)

  • Lee, Tong-Sup;Kim, Il-Nam;Kang, Dong-Jin;Kim, Dong-Seon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.239-243
    • /
    • 2007
  • Presence of bottom water nitrite in the Ulleung Basin was remarkable because it is totally unexpected phenomenon at such an oxygen-rich environment. Yet no scientific explanation was set forward. Of several plausible explanations, following the Ockham's suggestion, a leaching of nitrite as an intermediate product of denitrification in the top sediment at the slope is most agreeable to given environmental settings. There seems no complementary process to make up the loss of N in the Ulleung Basin, which seems contribute to the characteristically low N:P ratio in the deep waters. If warming proceeds that weakens the thermohaline circulation, a current biological pump may stall and the phytoplankton assemblage might replaced drastically. If so this will pause an utmost challenge to the ecosystem of the East/Japan Sea. Still there remains a contradictory sedimentary signature that requests further explanation regarding the N (or organic C)-cycle such as extraordinarily high organic carbon content despite abundant oxidants in the overlying waters.