• Title/Summary/Keyword: phytoplankton bloom

Search Result 194, Processing Time 0.029 seconds

Ecological Model Experiments of the Spring Bloom at a Dumping Site in the Yellow Sea (생태계모델을 이용한 황해투기해역에서의 춘계 식물플랑크톤 대증식 연구)

  • Song, Kyu-Min;Lee, Sang-Ryong;Lee, Seok;Ahn, Yu-Hwan
    • Ocean and Polar Research
    • /
    • v.29 no.3
    • /
    • pp.217-231
    • /
    • 2007
  • To explore limiting factors of spring bloom caused by waste disposal after dumping activity commenced in the Yellow Sea, we used a 1-dimensional temperature-ecological coupled model. The vertical structure of temperature and vertical diffusivity (Kh) are calculated by the temperature model with sea surface temperature using the 2.5 layers turbulence closure scheme. The ecological model applied results at the temperature model consisted of five state variables (DIN, DIP, phytoplankton, zooplankton, and detritus) forced by photosynthetically available radiation. We simulate year-to-year variations of plankton and nutrients using the coupled model from 1998 to 2000 and compare results of the model with observed data. It turned out that temperature is the growth factor of spring bloom in dumping area. During the winter the weak stratification made sufficient supply of the accumulated nutrients from the sea bed into the upper water column and led to the bloom in the coming spring. Radiation also turned out to be another important factor of spring bloom in the study area. Insufficient radiation of March 1999 showed low chlorophyll-a concentration despite sufficient nutrients in the surface.

Effect of Salinity Change on Biological Structure between Primary Producers and Herbivores in Water Column (해수층의 염분 변화가 일차생산자와 상위소비자의 크기구조에 미치는 영향)

  • SIN, YONGSIK;SOH, HOYOUNG;HYUN, BONGKIL
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.2
    • /
    • pp.113-123
    • /
    • 2005
  • Samples were collected to investigate the effect of salinity change on biological interaction between primary producers and herbivores in water column of the Youngsan estuary (Mokpo Harbor) at 8 stations from October 2003 to September 2004. The highest river freshwater inputs were introduced into the estuary from the Youngsan dike during summer (June and July 2004). Ranges of salinity were between 6 and 28.9 psu when the gates of dike were open whereas the ranges were between 24.4 and 30.3 psu when the gates were closed. Algal bloom occurred in February and July when the gates were not open at the upper region of the Youngsan estuary and the bloom was dominated $(70\%)$ by large cells of phytoplankton $(micro-sized;>20{\mu}m).\;Nano-sized (2-20{\mu}m)$ and pico-sized phytoplankton $(<2{\mu}m)$ were dominant in October, November 2003, June, August and September 2004 when the gates were open suggesting that size structure was affected by river discharge from the dike. Micro-and meso-zooplankton (herbivores) displayed the similar pattern to that of phytoplankton. The biomass of zooplankton was higher when the gates were closed than when the gates open and also the biomass was higher at the upper region of the harbor system. This results suggest that freshwater inputs affect size structure and biomass of phytoplankton by changing salinity, nutrient inputs, turbidity or light level In water column resulting in the change of the interaction between primary producters and herbivores in the Youngsan estuary.

Fluctuation of Environmental Factors and Dynamics of Phytoplankton Communities in Lower Part of the Han River (한강 하류에서 환경요인의 변동과 식물플랑크톤의 군집 동태)

  • Suh, Mi-Yeon;Kim, Baik-Ho;Bae, Kyung-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.3
    • /
    • pp.395-402
    • /
    • 2007
  • Concentrative samplings of 35 times on standing crops of phytoplankton and physicochemical factors were conducted at five sites over Seongsu Bridge to Seongsan Bridge in lower parts of the Ban River from January to December 2006. Over the study, all physicochemical factors showed no large differences among the sampling sites except station 2 having high concentrations of BOD, TN, and TP. Heavy rain also cause these concentrations to decrease. The phytoplankton species and abundance (88 taxa and $1{\sim}41$,104 cells $mL^{-1}$) were varied according to the season, and sharply decreased during heavy rains. In particular, cyanobacteria dominated the phytoplankton community during dry seasons, while green algae and diatom dominated during the rainy seasons. However, after the termination of rain, high water temperatures over $20^{\circ}C$ and low N/P ratios $(9.4{\sim}18.9)$ evoked the cyanobacterial bloom. These results indicate that although the heavy rain (huge outflows of Paltang Dam) temporarily diluted the nutrient level and effected the cyanobacterial bloom in the lower parts of the Han River, cyanobacterial abundance was recovered by the high temperature and low N/P ratio as the rainfall discontinued.

Seasonal Cycle of Phytoplankton in Aquaculture Ponds in Bangladesh

  • Affan, Abu;Jewel, Abu Syed;Haque, Mahfuzul;Khan, Saleha;Lee, Joon-Baek
    • ALGAE
    • /
    • v.20 no.1
    • /
    • pp.43-52
    • /
    • 2005
  • A study on the seasonal changes in the phytoplankton community was carried out in four aquaculture ponds of Bangladesh over a period of 16 months from August 2000 to November 2001. Out of 45 phytoplankton species identified, 30 belong to Cyanophyceae, 7 to Chlorophyceae, 5 to Bacillariophyceae and 3 to Euglenophyceae. The highest phytoplankton abundance was observed in spring followed by early autumn, summer, and the lowest was in winter. The annual succession of Cyanophyceae was characterized by spring and early autumn period dominated by Microcystis sp. Anabaena sp. and Planktolymbya sp. with Microcystis sp. as the main blue-green algae represented. Chlorophyceae was characterized by rainy season domination of Chlorella vulgaris, Pediastrum sp. and Scenedesmus denticulatus with maximum abundance of Chlorella vulgaris. Whereas Bacillariophyceae was dominant during the winter period. Navicula angusta and Cyclotella meneghiniana were the most frequently occurring species of Bacillariophyceae throughout the study period. Euglenophyceae was dominant in late autumn and Euglena sp. was the dominant species. The effect of various physicochemical water quality parameters on the seasonal distribution and succession of the above mentioned phytoplankton population as well as the interaction and eutrophication are discussed.

Estimation of Nutrient Loading and Trophic States in a Coastal Estuary

  • Bach, Quang-Dung;Shin, Yong-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.337-346
    • /
    • 2011
  • We investigated nutrient loading and trophic states in a coastal estuarine system in the Asan estuary by assessing phytoplankton biomass and using the trophic index (TRIX). The monthly and yearly nutrient loading (TN, TP) from freshwater discharge from the Asan and Sapgyo reservoirs into the estuary were estimated and analyzed with related factors. Monitoring data (physio-chemical and biological variables) collected at five estuary stations were used to assess trophic states. Descriptive statistics of total phytoplankton cells, chl a concentrations and primary productivity were also used to assess seasonal trophic status. N loading from freshwater ranged $1.0{\sim}1.3{\times}10^4$ ton yearly. The yearly P loading ranged between 350 and 400 ton during 2004~2006, increasing to 570 ton in 2007. Regression results suggest that DIN and DSi were correlated with freshwater discharge at the upper region. Based on phytoplankton biomass and total cell abundance, the trophic state of the estuary was found to be eutrophic during spring due to phytoplankton bloom. Primary productivity level was remarkably high, especially in summer coinciding with high nutrient loading. Pheopigments increased during warm seasons, i.e. summer and fall. Trophic index results indicate that the trophic state varied between mesotrophic and eutrophic in the estuary water body, especially in the upper region. The results suggest that phytoplankton production was regulated by nutrient loading from freshwater whereas biomass was affected by other properties than nutrient loading in the Asan Estuary ecosystem.

Spring Bloom of Skeletonema costatum and Lake Trophic Status in the Hwajinpo Lagoon, South Korea (화진포호의 돌말 Skeletonema costatum 대발생과 영양상태)

  • Kim, Baik-Ho;Won, Doo-Hee;Kim, Yong-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.3
    • /
    • pp.329-339
    • /
    • 2012
  • In the spring (March to June) in 2010, one diatom Skeletonema costatum occurred outbreaks in Lake Hwajinpo, one of the typical lagoons on the east coast of South Korea. We compared the characteristics of the phytoplankton community during the bloom and extinction period of S. costatum, and evaluated the water quality based on nutritional indices. Results indicate that 1) this bloom showed the highest cell density ($>10^5$ cells $mL^{-1}$) among outbreaks of S. costatum occurred Korea, 2) occurred in below or over $20^{\circ}C$ water temperature, and 3) was destroyed in the early summer with higher temperature than the bloom period. Water quality or trophic status of the lake was eutrophic to hypertrophic with high salinity, BOD, COD and phosphate, and low N/P ratios and transparency. Phytoplankton community in the spring bloom had a high dominance and low diversity, but rightly recovered to low dominance and high diversity in the summer season. Therefore, we temporarily conclude that the bloom of S. costatum in Hwajinpo was triggered by the extended spring drought and the reduced influx of river water, and appeal that the bloom can happen repeatedly every year.

Spatio-temporal Fluctuations of Size-structured Phytoplankton over an Annual Cycle in the Youngsan Lake

  • Song, Eun-Sook;Shin, Yong-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.530-540
    • /
    • 2008
  • The temporal and spatial variations of size-structured phytoplankton dynamics in Youngsan Lake were investigated to explore potential mechanims controlling the dynamics in the Youngsan Lake. Field data were collected monthly from February to October, 2003 at 6 stations along the axis of Youngsan Lake. In this study, phytoplankton (chlorophyll $\alpha$) were categorized into three size classes: micro-size ($>20{\mu}m$), nano-size ($2{\sim}20{\mu}m$) and pico-size ($<20{\mu}m$). Water temperature, light attenuation coefficients, PAR (photosynthetically active radiation) and suspended solids were measured to analyze relationship between physical-chemical properties and size structure of phytoplankton. Phytoplankton blooms developed during March, July and October in the upper region of the main stem whereas small-scaled spring bloom was observed in the lower region. The scales of phytoplankton blooms were higher in the upper regions than the lower region and blooms were predominated by micro-size class in upper region but predominated by nano-size class in lower region. Growth of size-structured phytoplankton appeared to be controlled by rather light availability than temperature-dependant metabolisms in the system. Phytoplankton growth may be also supported by ambient nutrients available in the water column from analyses of chlorophyll $\alpha$ vs. nutrient concentrations including nitrite+nitrate and orthophosphate. Growth of nano-sized phytoplankton alone appeared to be supported by orthophosphate as well as nitrite+nitrate indicating that response of phytoplankton to nutrient inputs may be size-dependent.

Changes of Dominant Species of Phytoplanktons and Hydrological Causes of Water Bloom in the Lake Unmun, Cheongdo-gun, Gyeonsangbuk-do (경상북도 청도군, 운문호의 식물플랑크톤 우점종 변동과 수화현상의 수문학적 발생원인)

  • Kim, Mi-Kyung;Lee, Soon-Hwa;Lee, Chul-Hwee
    • ALGAE
    • /
    • v.22 no.4
    • /
    • pp.261-271
    • /
    • 2007
  • The variations of species compositions, standing crops and seasonal succession of phytoplanktons including Cyanophyceae, Chlorophyceae and Bacillariophyceae were investigated with physico-chemical elements of water to clarify the causes of water bloom according to the water depth in the Lake Unmun. The increased amounts of turbidity, T-N, T-P and SS originated from heavy rain and typhoon in the middle of June provoked to produce phytoplanktons. In July and August, the dominant species was Peridinium sp., while the subdominant species was Microcystis aeruginosa. In October, Aulacoseira distans was dominant and Asterionella formosa was subdominant. During the period of water shortage, the concentrated pollutants caused the decrease of precipitation, the long stagnation time of water body and the mixed pollutants by upwelling as decreasing water temperature could accelerate the water bloom. The preventives to decrease microalgal generation should be controled by the stagnation time of water body by increasing outflow to intercept water bloom such as ulacoseira sp. in October as well as summer.

The Community Dynamics of Microbial Food Web during Algal Bloom by Stephanodiscus spp. in Downstream of Nakdong River (낙동강 하류부에서 Stephanodiscus속에 의한 수화 발생시 미생물먹이망 군집 동태)

  • Seo, Jung-Kwan;Lee, Hae-Jin;Chung, Ik-Kyo
    • Korean Journal of Environmental Biology
    • /
    • v.28 no.3
    • /
    • pp.172-178
    • /
    • 2010
  • The bloom of the genus Stephanodiscus was gradually extinguished after 18 April. Counts of bacterial population were increased as the diatom bloom was disappeared. Numbers of the heterotrophic nanoflagellates and ciliates were also increased during the disappearance of the bloom. The densities of the mesozooplankton, the major predator of the diatoms, started to increase in April. However, their growth was suppressed during the bloom period of the diatoms (from January to March). During the bloom period of the diatoms, the monthly average value of the basic productivity amounted up to 11,765.7 mgC $m^{-2}day^{-1}$, which is relatively high value considering the low temperature and light during that period. The growth rate of phytoplankton in March, when the bloom was beginning to be supressed was 0.007. The growth rate of phytoplankton was negative value in April when the decreasing of the algal density was started.

Environmental Studies on Masan Bay 2. Annual Cycle of Phytoplankton (마산항의 환경학적 연구 2. 식물플랑크톤의 년변화)

  • Yoo, Kwang Il;Lee, Jong Wha
    • 한국해양학회지
    • /
    • v.11 no.1
    • /
    • pp.34-38
    • /
    • 1976
  • Monthly observation of phytoplankton were made from September, 1974 to June 1975 at three stations in the Masan Bay. Sixty three species of phytoplankton (diatoms), representing 25 genera were taken in this study. Of these Skeletonema costatum, Eucampis zoodiacus, Ditylum brightwellii, Chaetoceros debilis, Coscinosira polychorda, and Leptocylindrus danicus were the dominant species in this area. By the ecological division the neritic species occupied 85.71% of total diatom diversity and it showed the characteristics of emayment. Diversity index(H) were the lowest in January and May in surface, while the highest in October. Phytoplankton standing crop varied extensively by months; ranging from 3,780 to 7,642,798 cells/l. total phytoplankton standing crop showed three major peaks in September, December and May. After bloom diatom standing crop were decreased gradually and showed minimum in November and February.

  • PDF