• 제목/요약/키워드: physiological inhibitors

Search Result 128, Processing Time 0.034 seconds

Identification and characterization of the phytocystatin family from Brassica rapa

  • Hong, Joon-Ki;Hwang, Jung-Eun;Park, Tae-Ho;Zang, Yun-Xiang;Lee, Sang-Choon;Kwon, Soo-Jin;Mun, Jeong-Hwan;Kim, Hyun-Uk;Kim, Jin-A;Jin, Mi-Na;Kim, Jung-Sun;Lee, Soo-In;Lim, Myung-Ho
    • Journal of Plant Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.317-327
    • /
    • 2008
  • Phytocystatins, which are inhibitors of plant cysteine peptidases, are involved in the regulation of protein turnover and in the defense against insect pests and pathogens. Extensive searches in the Brassica rapa genome allowed the prediction of at least eight different phytocystatin genes on seven chromosomes in the B. rapa genome. Structure comparisons based on alignments of the all BrCYS ($\underline{B}$. $\underline{r}apa$ $phyto{\underline{cys}}tatin$) proteins using the CLUSTALW program revealed conservation of the three consensus motifs known to interact with the active site of cysteine peptidases. According to the phylogenetic analysis based on the deduced amino acid sequences, the eight BrCYS proteins were divided into several clusters related to the orthologous phytocystatin. The predicted three-dimensional structure models of the eight BrCYS proteins demonstrate that all of these proteins are similar to the reported crystal structure of oryzacystatin-I (OC-I). Digital northern and RT-PCR analyses indicated that the eight BrCYS genes exhibit different expression patterns in B. rapa tissues and respond differently to abiotic stimuli. The differences in gene structure and expression between the eight BrCYS genes suggest that these proteins may play diverse physiological roles in B. rapa and may interact with cysteine peptidases through different mechanisms.

Modulated Gene Expression of Toxoplasma gondii Infected Retinal Pigment Epithelial Cell Line (ARPE-19) via PI3K/Akt or mTOR Signal Pathway

  • Zhou, Wei;Quan, Juan-Hua;Gao, Fei-Fei;Ismail, Hassan Ahmed Hassan Ahmed;Lee, Young-Ha;Cha, Guang-Ho
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.2
    • /
    • pp.135-145
    • /
    • 2018
  • Due to the critical location and physiological activities of the retinal pigment epithelial (RPE) cell, it is constantly subjected to contact with various infectious agents and inflammatory mediators. However, little is known about the signaling events in RPE involved in Toxoplasma gondii infection and development. The aim of the study is to screen the host mRNA transcriptional change of 3 inflammation-related gene categories, PI3K/Akt pathway regulatory components, blood vessel development factors and ROS regulators, to prove that PI3K/Akt or mTOR signaling pathway play an essential role in regulating the selected inflammation-related genes. The selected genes include PH domain and leucine- rich-repeat protein phosphatases (PHLPP), casein kinase2 (CK2), vascular endothelial growth factor (VEGF), pigment epithelium-derived factor (PEDF), glutamate-cysteine ligase (GCL), glutathione S-transferase (GST), and NAD(P)H: quinone oxidoreductase (NQO1). Using reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), we found that T. gondii up-regulates PHLPP2, $CK2{\beta}$, VEGF, GCL, GST and NQO1 gene expression levels, but down-regulates PHLPP1 and PEDF mRNA transcription levels. PI3K inhibition and mTOR inhibition by specific inhibitors showed that most of these host gene expression patterns were due to activation of PI3K/Akt or mTOR pathways with some exceptional cases. Taken together, our results reveal a new molecular mechanism of these gene expression change dependent on PI3K/Akt or mTOR pathways and highlight more systematical insight of how an intracellular T. gondii can manipulate host genes to avoid host defense.

Effect of Vitamin C, Silicon and Iron on Collagen Synthesis and Break-Down Enzyme Expression in the Human Dermal Fibroblast Cell (HS27) (피부 섬유아세포에서 비타민 C, Silicon, 철분 처리가 콜라겐 합성 및 분해 관련 효소의 발현에 미치는 효과 비교)

  • Kim, Jeong-Eun;Lee, Jin-Ah;Kim, Hyun-Ae;Kim, Jung-Min;Cho, Yun-Hi
    • Journal of Nutrition and Health
    • /
    • v.42 no.6
    • /
    • pp.505-515
    • /
    • 2009
  • Collagen is the major matrix protein in dermis and consists of proline and lysine, which are hydroxylated by prolyl hydroxylase (PH) and lysyl hydroxylase (LH) with cofactors such as vitamin C, oxygen, iron (Fe$^{2+}$), ketoglutarate and silicon. The collagen degradation is regulated by matrix metalloproteinase-1 (MMP-1), of which is the major collagen-degrading proteinase whereas tissue inhibitors of metalloproteinase-1 (TIMP-1) bind to MMP-1 thereby inhibiting MMP-1 activity. In this study, we investigated the effects of vitamin C, silicon and iron on mRNA, protein expressions of PH, LH, MMP-1 and TIMP-1. The physiological concentrations of vitamin C (0-100 $\mu$M), silicon (0-50 $\mu$M) and iron (Fe$^{2+}$:0-50 $\mu$M) were treated to human dermal fibroblast cells (HS27 cells) for 3 or 5days. The expression level of mRNA and protein was increased in not only PH but also LH when cells were incubated with vitamin C. A similar increase in LH mRNA or protein expression occurred when cells were incubated with silicon. Our results suggest that treatment of vitamin C and silicon increased mRNA and protein expression of PH and LH in human dermal fibroblast.

Succinate Transport in Rabbit Renal Basolateral Membrane Vesicles (가토 근위세뇨관 Basolateral Membrane Vesicle에서 Succinate 이동 특성)

  • Kim, Yong-Keun;Bae, Hae-Rahn;Rhim, Byung-Yong
    • The Korean Journal of Physiology
    • /
    • v.22 no.2
    • /
    • pp.307-318
    • /
    • 1988
  • Properties of succinate transport were examined in basolaterat membrane vesicles (BLMV) isolated from rabbit renal cortex. An inwardly directed $Na^+$ gradient stimulated succinate uptake and led to a transient overshoot. $K^+,{\;}Li^+,{\;}Rb^+$ and choline could not substitute for $Na^+$ in the uptake process. The dependence of the initial uptake rate of succinate on $Na^+$ concentration exhibited sigmoidal kinetics, indicating interaction of more than one $Na^+$ with transporter Hill coefficient for $Na^+$ was calculated to be 2.0. The $Na^+-dependent$ succinate uptake was electrogenic, resulting in the transfer of positive charge across the membrane. The succinate uptake into BLMV showed a pH optimum at external pH $7.5{\sim}8.0$, whereas succinate uptake into brush border membrane vesicles (BBMV) did not depend on external pH. Kinetic analysis showed that a Na-dependent succinate uptake in BLMV occurred via a single transport system, with an apparent Km of $15.5{\pm}0.94{\;}{\mu}M$ and Vmax of $16.22{\pm}0.25{\;}nmole/mg{\;}protein/min$. Succinate uptake was strongly inhibited by $4{\sim}5$ carbon dicarboxylates, whereas monocarboxylates and other organic anions showed a little or no effect. The succinate transport system preferred dicarboxylates in trans-configuration (furmarate) over cis-dicarboxylates (maleate). Succinate uptake was inhibited by the anion transport inhibitors DIDS, SITS and furosemide, and $Na^+-coupled$ transport inhibitor harmaline. These results indicate the existence of a $Na^+-dependent$ succinate transport system in BLMV that may be shared by the other Krebs cycle intemediates. This transport system seems to be very similar to the luminal transport system for dicarboxylates.

  • PDF

The Structural and Functional Role of p53 as a Cancer Therapeutic Target (암 치료 표적으로서 p53의 구조적 및 기능적 역할)

  • Han, Chang Woo;Park, So Young;Jeong, Mi Suk;Jang, Se Bok
    • Journal of Life Science
    • /
    • v.28 no.4
    • /
    • pp.488-495
    • /
    • 2018
  • The p53 gene plays a critical role in the transcriptional regulation of cellular response to stress, DNA damage, hypoxia, and tumor development. Keeping in mind the recently discovered manifold physiological functions of p53, its involvement in the regulation of cancer is not surprising. In about 50% of all human cancers, inactivation of p53's protein function occurs either through mutations in the gene itself or defects in the mechanisms that activate it. This disorder plays a crucial role in tumor evolution by allowing the evasion of a p53-dependent response. Many recent studies have focused on directly targeting p53 mutants by identifying selective, small molecular compounds to deplete them or to restore their tumor-suppressive function. These small molecules should effectively regulate various interactions while maintaining good drug-like properties. Among them, the discovery of the key p53-negative regulator, MDM2, has led to the design of new small molecule inhibitors that block the interaction between p53 and MDM2. Some of these small molecule compounds have now moved from proof-of-concept studies into clinical trials, with prospects for further, more personalized anti-carcinogenic medicines. Here, we review the structural and functional consequences of wild type and mutant p53 as well as the development of therapeutic agents that directly target this gene, and compounds that inhibit the interaction between it and MDM2.

Inhibitory Effects of a Recombinant Viral Cystatin Protein on Insect Immune and Development (바이러스 유래 시스타틴 재조합 단백질의 곤충 면역 및 발육 억제효과)

  • Kim, Yeongtae;Eom, Seonghyun;Park, Jiyeong;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.53 no.4
    • /
    • pp.331-338
    • /
    • 2014
  • Cystatins (CSTs) are reversible and competitive inhibitors of C1A cysteine proteases, corresponding to papain-like cathepsins in plants and animals. A viral CST (CpBV-CST1) was identified from a polydnavirus, Cotesia plutellae bracovirus (CpBV). Our previous study indicated that a transient expression of CpBV-CST1 interfered with immune response and development of Plutella xylostella larvae. To directly demonstrate the protein function, this study produced a recombinant CpBV-CST1 protein (rCpBV-CST1) using bacterial expression system to determine its inhibitory activity against cysteine protease and to assess its physiological alteration in insect immune and development. The open reading frame of CpBV-CST1 encodes a polypeptide of 138 amino acids (${\approx}15kDa$). rCpBV-cystatin protein in BL21 STAR (DE3) competent cells containing a recombinant pGEX4T-3:CpBV-CST1 was over-expressed by 0.5 mM IPTG for 4 h. In biological activity assay, the purified rCpBV-CST1 showed a significant inhibition against papain activity. It inhibited a cellular immune response of hemocyte nodule formation in the beet armyworm, Spodoptera exigua. Moreover, its oral administration retarded larval development of the diamondback moth, Plutella xylostella in a dose-dependent manner. These results suggest that CpBV-CST1 may be applied to control insect pest populations.

Non-Genomic Actions of Progesterone : Focussed on the Signaling Pathways in the Mammalian Ovary (프로게스테론의 비유전자 수준 작용 : 포유류 난소에서의 신호 전달 경로를 중심으로)

  • Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.10 no.2
    • /
    • pp.85-92
    • /
    • 2006
  • Progesterone(P4) is an important intermediate in the synthesis of androgens and estrogens. Furthermore, P4 itself plays a crucial role in ovulation, atresia and luteinization, and is essential for the continuation of early pregnancy in all mammalian species. In spite of the hormone's physiological importance, the exact action mechanism(s) of P4 in mammalian ovary has not been fully understood yet. In this context, a decades-long controversy regarding the identity of receptors that mediate non-genomic, transcription-independent cellular responses to P4 is presently attracting huge scientific interests. P4 may exert its action in mammalian ovary by several ways: 1) the well-documented genomic pathway, involving hormone binding to so-called classic cytosolic receptor(PGR) and subsequent modulation of gene expression by the ligand-receptor complex as transcription factor. 2) pathways are operating that do not act on the genome, therefore refered to as non-genomic actions. The prominent characteristics of the non-genomic P4 actions are: (i) rapid, (ii) insensitive to transcription inhibitors, (iii) transduced by membrane associated molecules. In particular, the non-genomic P4 actions could be mediated by: (a) classic genomic P4 receptor(PGR) that localizes at or near the plasma membrane, (b) a family of membrane progestin receptors(MPR $\alpha$, MPR $\beta$ and MPR $\gamma$), (c) progesterone receptor membrane component I(PGRMC1), and (d) a membrane complex composed of serpine I mRNA binding protein(SERBP1). The present review summarized these rapid signaling pathways of P4 in the mammalian ovary.

  • PDF

Inhibitory Effects of Fucoidan on Melanin Synthesis and Tyrosinase Activity (Fucoidan의 멜라닌 합성과 tyrosinase 활성도 억제 효과)

  • Jung, Sook-Hee;Ku, Mi-Jung;Moon, Hee-Jung;Yu, Byeng-Chul;Jeon, Man-Joong;Lee, Yong-Hwan
    • Journal of Life Science
    • /
    • v.19 no.1
    • /
    • pp.75-80
    • /
    • 2009
  • Melanogenesis is a physiological process that results in the synthesis of melanin pigments. Tyrosinase is a key enzyme for melanin biosynthesis, and hyperpigmentation disorders are associated with abnormal accumulation of melanin pigments, which can be improved by treatment with depigmenting agents. Among the possible melanin-reducing compounds, tyrosinase inhibitors are most promising for preventing and treating pigmentation disorder and are used as skin-whitening agents in the cosmetic industry. In the present study, the effects of fucoidan on melanogenesis and tyrosinase activity of B16F10 melanoma cells were investigated. Melanin synthesis and tyrosinase activity in B16F10 melanoma cells were decreased in a dose-dependent manner by fucoidan. Melanin production and tyrosinase activity in B16F10 melanoma cells stimulated by a-melanocyte stimulating hormone (a-MSH) were inhibited by fucoidan with a dose-dependent manner compared to control. Fucoidan inhibited tyrosinase activity of B16F10 melanoma cells with a dose-dependent manner as assessed by 3,4-dihydroxyphenylalanine (DOPA) staining. In conclusion, these findings indicate that fucoidan, which inhibit melanin synthesis and tyrosinase activity, is an effective skin-whitening agent.

A New Paradigm to Mitigate Osteosarcoma by Regulation of MicroRNAs and Suppression of the NF-${\kappa}B$ Signaling Cascade

  • Mongre, Raj Kumar;Sodhi, Simrinder Singh;Ghosh, Mrinmoy;Kim, Jeong Hyun;Kim, Nameun;Sharma, Neelesh;Jeong, Dong Kee
    • Development and Reproduction
    • /
    • v.18 no.4
    • /
    • pp.197-212
    • /
    • 2014
  • Osteosarcoma (OS) is one of the most common malignant primary bone tumors and NF-${\kappa}B$ appears to play a causative role, but the mechanisms are poorly understood. OS is one of the pleomorphic, highly metastasized and invasive neoplasm which is capable to generate osteoid, osteoclast and osteoblast matrix. Its high incidence has been reported in adolescent and children. Cell signal cascade is the pivotal functional mechanism acquired during the differentiation, proliferation, growth and survival of the cells in neoplasm including OS. The major limitation to the success of chemotherapy in OS is the development of multidrug resistance (MDR). Answers to all such queries might come from the knock-in experiments in which the combined approach of miRNAs with NF-${\kappa}B$ pathway is put into use. Abnormal miRNAs can modulate several epigenetical switching as a hallmark of number of diseases via different cell signaling. Studies on miRNAs have opened up the new avenues for both the diagnosis and treatment of cancers including OS. Collectively, through the present study an attempt has been made to establish a new systematic approach for the investigation of microRNAs, bio-physiological factors and their target pairs with NF-${\kappa}B$ to ameliorate oncogenesis with the "bridge between miRNAs and NF-${\kappa}B$". The application of NF-${\kappa}B$ inhibitors in combination with miRNAs is expected to result in a more efficient killing of the cancer stem cells and a slower or less likely recurrence of cancer.

Circadian Clock Genes, PER1 and PER2, as Tumor Suppressors (체내 시계 유전자 PER1과 PER2의 종양억제자 기능)

  • Son, Beomseok;Do, Hyunhee;Kim, EunGi;Youn, BuHyun;Kim, Wanyeon
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1225-1231
    • /
    • 2017
  • Disruptive expression patterns of the circadian clock genes are highly associated with many human diseases, including cancer. Cell cycle and proliferation is linked to a circadian rhythm; therefore, abnormal clock gene expression could result in tumorigenesis and malignant development. The molecular network of the circadian clock is based on transcriptional and translational feedback loops orchestrated by a variety of clock activators and clock repressors. The expression of 10~15% of the genome is controlled by the overall balance of circadian oscillation. Among the many clock genes, Period 1 (Per1) and Period 2 (Per2) are clock repressor genes that play an important role in the regulation of normal physiological rhythms. It has been reported that PER1 and PER2 are involved in the expression of cell cycle regulators including cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors. In addition, correlation of the down-regulation of PER1 and PER2 with development of many cancer types has been revealed. In this review, we focused on the molecular function of PER1 and PER2 in the circadian clock network and the transcriptional and translational targets of PER1 and PER2 involved in cell cycle and tumorigenesis. Moreover, we provide information suggesting that PER1 and PER2 could be promising therapeutic targets for cancer therapies and serve as potential prognostic markers for certain types of human cancers.