• Title/Summary/Keyword: physics-based method

Search Result 798, Processing Time 0.033 seconds

Machine-assisted Semi-Simulation Model (MSSM): Predicting Galactic Baryonic Properties from Their Dark Matter Using A Machine Trained on Hydrodynamic Simulations

  • Jo, Yongseok;Kim, Ji-hoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.55.3-55.3
    • /
    • 2019
  • We present a pipeline to estimate baryonic properties of a galaxy inside a dark matter (DM) halo in DM-only simulations using a machine trained on high-resolution hydrodynamic simulations. As an example, we use the IllustrisTNG hydrodynamic simulation of a (75 h-1 Mpc)3 volume to train our machine to predict e.g., stellar mass and star formation rate in a galaxy-sized halo based purely on its DM content. An extremely randomized tree (ERT) algorithm is used together with multiple novel improvements we introduce here such as a refined error function in machine training and two-stage learning. Aided by these improvements, our model demonstrates a significantly increased accuracy in predicting baryonic properties compared to prior attempts --- in other words, the machine better mimics IllustrisTNG's galaxy-halo correlation. By applying our machine to the MultiDark-Planck DM-only simulation of a large (1 h-1 Gpc)3 volume, we then validate the pipeline that rapidly generates a galaxy catalogue from a DM halo catalogue using the correlations the machine found in IllustrisTNG. We also compare our galaxy catalogue with the ones produced by popular semi-analytic models (SAMs). Our so-called machine-assisted semi-simulation model (MSSM) is shown to be largely compatible with SAMs, and may become a promising method to transplant the baryon physics of galaxy-scale hydrodynamic calculations onto a larger-volume DM-only run. We discuss the benefits that machine-based approaches like this entail, as well as suggestions to raise the scientific potential of such approaches.

  • PDF

A study on the Development of Physics Education Program for Foreign Students of Natural Science and Engineering College in Korea (이공계 대학의 유학생을 위한 물리교육 프로그램 개발 연구)

  • Kim, Soocheol
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.9
    • /
    • pp.1-16
    • /
    • 2019
  • This study was carried out to develop a physics education program for foreign students of university in Korea to improve their ability to major in the field and to prevent them from becoming dropout. The subjects of the study are five Chinese students attending a natural science and engineering college. Prior to the development of the physics education program, the researchers developed basic physics textbooks for the foreign students and questionaries for diagnosis and summative evaluation, and utilized them to apply a total of seven classes. After the application of the classes, the results of the student's diagnosis and summative evaluation, the teacher's diaries, the observer's diaries, and the transcripts were analyzed by triangulation method. In addition, Nvivo12 was used for the analysis of the teacher's and observer's diaries to help with qualitative analysis. The results of the study are as follows: First, the oder and contents of physics education program for students of the natural science and engineering college were presented in detail, and basic physics textbooks and tools for diagnosis and summative assessment were developed. Second, as a result of the analysis of the diagnosis and summative assessment results of the program, the students' basic physics achievement improved by an average of 40 points due to the application of the developed program. Third, as a result of the application of the program using Nvivo12, meaningful node and actual cases were extracted. There were 10 types of nodes created such as understanding of the students, teaching method, rate of the participation, level differences, language problems, relevance to majors, curriculum and methods of education in the country of origin, cooperative learning, and interest inducement. The researcher provided suggestions on physics education methods for students of science and engineering colleges in Korea based on the related cases.

Properties of Indium Tin Oxide Multilayer Fabricated by Glancing Angle Deposition Method

  • Oh, Gyujin;Lee, Kyoung Su;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.367-367
    • /
    • 2013
  • Commercial applications of indium tin oxide (ITO) can be separated into two useful areas. As it is perceived to bear electrical properties and optical transparency at once, its chance to apply to promising fields, usually for an optical device, gets greater in the passing time. ITO is one of the transparent conducting oxides (TCO), and required to carry the relative resistance less than $10^{-3}{\Omega}$/cm and transmittances over 80 % in the visible wavelength of light. Because ITO has considerable refractive index, there exist applications for anti-reflection coatings. Anti-reflection properties require gradual change in refractive index from films to air. Such changes are obtained from film density or nano-clustered fractional void. Glancing angle deposition (GLAD) method is a well known process for adjusting nanostructure of the films. From its shadowing effects, GLAD helps to deposit well-controlled porous films effectively. In this study, we are comparing the reference sample to samples coated with controlled ITO multilayer accumulated by an e-beam evaporation system. At first, the single ITO layer samples are prepared to decide refractive index with ellipsometry. Afterwards, ITO multilayer samples are fabricated and fitted by multilayer ellipsometric model based on single layer data. The structural properties were measured by using atomic force microscopy (AFM), and by scanning X-ray diffraction (XRD) measurements. The ellipsometry was used to determine refractive indices and extinction coefficient. The optical transmittance of the film was investigated by using an ultraviolet-visible (UV-Vis) spectrophotometer.

  • PDF

Synthesis and Exploitation in Solar Cells of Hydrothermally Grown ZnO Nanorods Covered by ZnS Quantum Dots

  • Mehrabian, Masood;Afarideh, Hossein;Mirabbaszadeh, Kavoos;Lianshan, Li;Zhiyong, Tang
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.307-316
    • /
    • 2014
  • Improved power conversion efficiency of hybrid solar cells with ITO/ZnO seed layer/ZnO NRs/ZnS QDs/P3HT/PCBM/Ag structure was obtained by optimizing the growth period of ZnO nanorods (NRs). ZnO NRs were grown using a hydrothermal method on ZnO seed layers, while ZnS quantum dots (QDs) (average thickness about 24 nm) were fabricated on the ZnO NRs by the successive ionic layer adsorption and reaction (SILAR) technique. Morphology, crystalline structure and optical absorption of layers were analyzed by a scanning electron microscope (SEM), X-ray diffraction (XRD) and UV-Visible absorption spectra, respectively. The XRD results implied that ZnS QDs were in the cubic phase (sphalerite). Other experimental results showed that the maximum power conversion efficiency of 4.09% was obtained for a device based on ZnO NR10 under an illumination of one Sun (AM 1.5G, $100mW/cm^2$).

Theoretical Study for the ITO/Si based High Contrast Grating Structure with Focusing Capability and its Fabrication

  • Kim, J.Y.;Yeon, K.H.;Kyhm, J.;Cho, W.J.;Kim, T.J.;Kim, Y.D.;Song, J.D.
    • Applied Science and Convergence Technology
    • /
    • v.24 no.6
    • /
    • pp.250-253
    • /
    • 2015
  • High contrast grating (HCG) is the structure made up of the sub-wavelength grating of high-index and the surrounding layer of low-index, which reveals high contrast between two materials. Its advantages include high reflectivity over a broad bandwidth, polarization and wavelength selectivity, optical high-Q resonator, and phase modulation. In this work, the HCG structure comprising of indium tin oxide (ITO) and Silicon (Si), for the surrounding layer and the grating layer respectively, was studied. Its theoretical model was established, and transmittance, phase and optical behavior were calculated by rigorous coupled-wave analysis and finite element method. Furthermore, the established structure was fabricated to validate its feasibility. The fabricated structure shows the focusing capability whose length is about $10{\mu}m$, and the feasibility of the structure was demonstrated. It is also meaningful that ITO layer can contribute to the fabrication of the HCG structure, leading to enable the structure to be electrical-driven.

ANALYZING ISUAL SPECTROPHOTOMETER DATA USING A TWO-COLOR DIAGRAM METHOD

  • CHEN ALFRED BING-CHIH;CHIANG PO-SHIH;HUANG TIAN-HSIANG;KUO CHENG-LING;WANG SHI-CHUN;SU HAN-TZONG;HSU RUE-RoN;CHANG MING-HUI;CHANG YEOU-SHIN;LIU TIE-YUE;MENDE STEPHEN B.;FREY HARALD U.;FUKUNISHI HIROSHI
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.303-306
    • /
    • 2005
  • Transient luminous events (TLEs; sprites, elves, jets and etc.) are lightning-related optical flashes occurring above thunderstorms. Since the first discovery of sprites in 1989, scientists have learned a great deal about the morphological, spectroscopic and electromagnetic characteristics of TLEs through ground and spacecraft campaigns. However, most of the TLE studies were based on events recorded over US High Plains. To elucidate the possible biasing effects, space-borne observations are needed and have their merits. Imager of sprites and Upper Atmospheric Lightning (ISUAL) on the FORMOSAT-2 satellite is the first instrument to carry out a true global measurement of TLEs from a low- earth orbit. In this short paper, we apply a common astronomical data analysis technique, two-color diagram, on the ISUAL spectrophotometer (SP) data. By choosing appropriated bandpasses and converting the measured flux of TLEs into the unit of magnitude, two-color diagrams of TLEs can be constructed. We demonstrate that two-color diagrams, which were constructed from the narrow-band spectrophotometer data, can be used to classify different types of TLEs and trace their temporal evolution. The amount of reddening due to Earth's atmosphere can also be estimated from two-color diagrams assembled from the broad-band spectrophotometer data.

Dielectric and Optical Properties of Amorphous Hafnium Indium Zinc Oxide Thin Films on Glass Substrates

  • Shin, Hye-Chung;Seo, Soon-Joo;Denny, Yus Rama;Lee, Kang-Il;Lee, Sun-Young;Oh, Suhk-Kun;Kang, Hee-Jae;Heo, Sung;Chung, Jae-Gwan;Lee, Jae-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.225-225
    • /
    • 2011
  • The dielectric and optical properties of GaInZnO (GIZO), HfInZnO (HIZO) and InZnO (IZO) thin films on glass by RF magnetron sputtering method were investiged using reflection electron energy loss spectroscopy (REELS). The band gap was estimated from the onset values of REELS spectra. The band gaps of GIZO, HIZO and IZO thin films are 3.1 eV, 3.5 eV and 3.0 eV, respectively, Hf and Ga incorporated into IZO results in an increase in the energy band gap of IZO by 0.5 eV and 0.1 eV. The dielectric functions were determined by comparing the effective cross section determined from experimental REELS with a rigorous model calculation based on the dielectric response theory, using available software package, good agreement between the experimental and fitting results gives confidence in the accuracy of the determined dielectric function. The main peak of Energy Loss Function (ELF) obtained from IZO shows at 18.42 eV, which shifted to 19.43 eV and 18.15 eV for GIZO and HIZO respectively, because indicates the corporation of cation Ga and Hf in the composition. The optical properties represented by the dielectric function e, the refractive index n, the extinction coefficient k, and the transmission coefficient, T of HIZO and IZO thin films were determined from a quantitative analysis of REELS. The transmission coefficient was increased to 93% and decreased to 87% in the visible region with the incorporation of Hf and Ga in the IZO compound.

  • PDF

Spatial Distributions of Alloying Elements Obtained from Atom Probe Tomography of the Amorphous Ribbon Fe75C11Si2B8Cr4

  • Shin, Jinkyung;Yi, Seonghoon;Pradeep, Konda Gokuldoss;Choi, Pyuck-Pa;Raabe, Dierk
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.190-193
    • /
    • 2013
  • Spatial distributions of alloying elements of an Fe-based amorphous ribbon with a nominal composition of $Fe_{75}C_{11}Si_2B_8Cr_4$ were analyzed through the atom probe tomography method. The amorphous ribbon was prepared through the melt spinning method. The macroscopic amorphous natures were confirmed using an X-ray diffractometer (XRD) and a differential scanning calorimeter (DSC). Atom Probe (Cameca LEAP 3000X HR) analyses were carried out in pulsed voltage mode at a specimen base temperature of about 60 K, a pulse to base voltage ratio of 15 %, and a pulse frequency of 200 kHz. The target detection rate was set to 5 ions per 1000 pulses. Based on a statistical analyses of the data obtained from the volume of $59{\times}59{\times}33nm^3$, homogeneous distributions of alloying elements in nano-scales were concluded. Even with high carbon and strong carbide forming element contents, nano-scale segregation zones of alloying elements were not detected within the Fe-based amorphous ribbon. However, the existence of small sub-nanometer scale clusters due to short range ordering cannot be completely excluded.

Anisotropic superconductivity of high quality FeSe1-x Single crystal

  • Kwon, Chang Il;Ok, Jong Mok;Kim, Jun Sung
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.26-30
    • /
    • 2014
  • We investigate the upper critical field anisotropy ${\Gamma}_H$ and the magnetic penetration depth anisotropy ${\Gamma}_{\lambda}$ of a high-quality $FeSe_{1-x}$ single crystal using angular dependent resistivity and torque magnetometry up to 14 T. High quality single crystals of $FeSe_{1-x}$ were successfully grown using $KCl-AlCl_3$ flux method, which shows a sharp superconducting transition at $T_C{\sim}9K$ and a high residual resistivity ratio of ~ 25. We found that the anisotropy ${\Gamma}_H$ near $T_C$ is a factor of two larger than found in the poor-quality crystals, indicating anisotropic 3D superconductivity of $FeSe_{1-x}$. Similar to the 1111-type Fe pnictides, the anisotropies ${\Gamma}_{\lambda}$ and ${\Gamma}_H$ show distinct temperature dependence; ${\Gamma}_H$ decreases but ${\Gamma}_{\lambda}$ increases with lowering temperature. These behaviors can be attributed to multi-band superconductivity, but different from the case of $MgB_2$. Our findings suggest that the opposite temperature dependence of ${\Gamma}_{\lambda}$ and ${\Gamma}_H$ is the common properties of Fe-based superconductors.

Mode Propagation in X-Ray Waveguides

  • Choi, J.;Jung, J.;Kwon, T.
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.112-117
    • /
    • 2008
  • Single-mode propagation conditions of X-ray waveguides are investigated by numerical calculations in order to understand the importance of waveguide design parameters, such as core thickness and the optical constants of waveguide materials, on the transmission and coherence properties of the waveguide. The simulation code for mode analyzing is developed based on a numerical solution of the parabolic wave equation. The initial boundary value problem is solved numerically using a finite-difference scheme based on the Crank-Nicolson scheme. The E-field intensities in a core layer are calculated at an X-ray energy of 8.0 keV for air and beryllium(Be) core waveguides with different cladding layers such as Pt, Au, W, Ni and Si to determine the dependence on waveguide materials. The highest E-field intensity radiated at the exit of the waveguide is obtained from the Pt cladded beryllium core with a thickness of 20 nm. However, the intensity from the air core waveguide with Pt cladding reaches 64% of the Be-Pt waveguide. The dependence on the core thickness, which is the major parameter used to generate a single mode in the waveguide, is investigated for the air-Pt, and Be-Pt waveguides at an X-ray energy of 8.0 keV. The mode profiles at the exit are shown for the single mode at a thickness of up to 20 nm for the air-Pt and the Be-Pt waveguides.