• Title/Summary/Keyword: physics-based animation

Search Result 28, Processing Time 0.022 seconds

Secondary Action based Dynamic Jiggle-Bone Animation (이차 행동 기반의 다이나믹 지글 본 애니메이션)

  • Park, Sung-Jun;An, Deug-Yong;Oh, Seong-Suk
    • Journal of Korea Game Society
    • /
    • v.10 no.1
    • /
    • pp.127-134
    • /
    • 2010
  • The secondary animation technology for the detailed objects including accessories is being studied and applied to the modern game development. The jiggle-bone deformer is used for 3D graphic tools as a technology to create the animation of these objects, but it is disadvantageous in that the real-time modification is difficult and the graphic developers need much time. The secondary animation can also be realized using a physical game engine, but the cost of animation process increases when many objects in a scene of a game are rendered, and it has a low efficiency. This paper proposes a dynamic jiggle-bone animation algorithm, which can be modified in real time and has the similar effect to the physical game engine. To evaluate the performance of the proposed algorithm, tests were conducted with varied number of bones and for the case of one scene with the animation of many jiggle-bones, and the results were adjudged relatively efficient.

On-line Motion Synthesis Using Analytically Differentiable System Dynamics (분석적으로 미분 가능한 시스템 동역학을 이용한 온라인 동작 합성 기법)

  • Han, Daseong;Noh, Junyong;Shin, Joseph S.
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.133-142
    • /
    • 2019
  • In physics-based character animation, trajectory optimization has been widely adopted for automatic motion synthesis, through the prediction of an optimal sequence of future states of the character based on its system dynamics model. In general, the system dynamics model is neither in a closed form nor differentiable when it handles the contact dynamics between a character and the environment with rigid body collisions. Employing smoothed contact dynamics, researchers have suggested efficient trajectory optimization techniques based on numerical differentiation of the resulting system dynamics. However, the numerical derivative of the system dynamics model could be inaccurate unlike its analytical counterpart, which may affect the stability of trajectory optimization. In this paper, we propose a novel method to derive the closed-form derivative for the system dynamics by properly approximating the contact model. Based on the resulting derivatives of the system dynamics model, we also present a model predictive control (MPC)-based motion synthesis framework to robustly control the motion of a biped character according to on-line user input without any example motion data.

Realtime Fluid Simulation and Rendering Using Billboard method on Mobile Environment (모바일 환경에서의 빌보드 기법을 통한 실시간 유체 시뮬레이션 렌더링)

  • Woo, Sang-Hyuk;Cho, Mirina;Park, Dong-Gyu
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.264-268
    • /
    • 2006
  • This paper presents a fire and smoke animation system using stable fluid animation techniques. Stable and fast fluid simulation methods are developed in PC and console games, but fluid simulation and interactive fluid models still have many problems. We studied and implemented physics-based models for fluids like fire and smoke effects using mobile 3D system. The mobile platform of our system is WIPI, which are the standard mobile platform in Korea also we adopted NF3D API for our 3D programming API.

  • PDF

Real-Time Simulation of Thin Rod

  • Choi, Min Gyu;Song, Oh-Young
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.849-859
    • /
    • 2013
  • This paper proposes a real-time simulation technique for thin rods undergoing large rotational deformation. Rods are thin objects such as ropes and hairs that can be abstracted as one-dimensional structures. Development of a real-time physical model that can produce visually convincing animation of thin rods has been a challenging problem in computer graphics. We adopt continuum mechanics to formulate the governing equation, and develop a modal warping technique for rods to integrate the governing equation in real-time; This is a novel extension of the previous modal warping techniques developed for solids and shells. Experimental results show that the proposed method runs in real-time even for large meshes and it can simulate large bending and/or twisting deformations.

Understanding the Selective Attention and Animation Induction Device According to the Visual Capture of Audience (관객의 시각포획현상에 따른 선택적 주의집중과 애니메이션 유도장치의 이해)

  • Lee, Jong-Han
    • Cartoon and Animation Studies
    • /
    • s.41
    • /
    • pp.133-152
    • /
    • 2015
  • Some artists and scientists in physics and animation originating from research on its form of expression thanks to the rapid development of the example in the late 20th century image production technology integrating existing media feature, perform a re-creation and pop culture content has been recognized as a key factor. animation of the modern emphasis is also commercial and artistic activities as show whether the artist can not be excluded that also target audience. The audience does not want only to receive offers simply 'seeing' and 'hearing' in the animation requires a more indirect mental met. the other side, the director should lead the audience to immerse myself in work as intended mystification induce the world. where a conflict occurs between the audience and the director and The director needs to have its troubleshooting point to 'Technology of the communication'. Which is reduced to 'How will tell,' is technology communication technologies that are abbreviated representations of animation director is accessible to the audience and it is a close relationship between the psychological aspect of audience. Because, the audience is reproduced in a limited space, but he called on the board of directors and the same time the screen, the audience located at reception and the director located at provide. It is given. led force is given to the director. for this reason, The director needs to pay attention to the psychological aspect of audience this can be explained based on psychoanalytic theory. In this paper, "How can you lie to the audience and the director is the same line?" put down logic that is the animation audience under the logic that takes place visually capture phenomenon "selective attention" and sub-concept of "goal-directed selection' and 'stimulus-driven capturel' for theory of psychology. also, Induction device to elicit selective attention of the audience accordingly, let's consider whether and how they apply in animation.

Physics-Based Real-Time Simulation of Thin Rods (가는 막대의 물리기반 실시간 시뮬레이션)

  • Choi, Min-Gyu
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.2
    • /
    • pp.1-7
    • /
    • 2010
  • This paper proposes a real-time simulation technique for thin rods undergoing large rotational deformation. Rods are thin objects such as ropes and hairs that can be abstracted as 1D structures. Development of a satisfactory physical model that runs in real-time but produces visually convincing animation of thin rods has been remaining a challenge in computer graphics. We adopt the energy formulation based on continuum mechanics, and develop a modal warping technique for rods that can integrate the governing equation in real-time. This novel simulation framework results from making extensions to the original modal warping technique, which was developed for the simulation of 3D solids. Experiments show that the proposed method runs in real-time even for large meshes, and that it can simulate large bending and/or twisting deformations with acceptable realism.

Punching Motion Generation using Reinforcement Learning and Trajectory Search Method (경로 탐색 기법과 강화학습을 사용한 주먹 지르기동작 생성 기법)

  • Park, Hyun-Jun;Choi, WeDong;Jang, Seung-Ho;Hong, Jeong-Mo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.969-981
    • /
    • 2018
  • Recent advances in machine learning approaches such as deep neural network and reinforcement learning offer significant performance improvements in generating detailed and varied motions in physically simulated virtual environments. The optimization methods are highly attractive because it allows for less understanding of underlying physics or mechanisms even for high-dimensional subtle control problems. In this paper, we propose an efficient learning method for stochastic policy represented as deep neural networks so that agent can generate various energetic motions adaptively to the changes of tasks and states without losing interactivity and robustness. This strategy could be realized by our novel trajectory search method motivated by the trust region policy optimization method. Our value-based trajectory smoothing technique finds stably learnable trajectories without consulting neural network responses directly. This policy is set as a trust region of the artificial neural network, so that it can learn the desired motion quickly.

3-dimensional Coordinate Measurement by Pulse Magnetic Field Method (자기적 방법을 이용한 3차원 좌표 측정)

  • Im, Y.B.;Cho, Y.;Herr, H.B.;Son, D.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.6
    • /
    • pp.206-211
    • /
    • 2002
  • We have constructed a new kind of magnetic motion capture sensor based on the pulse magnetic field method. 3-orthogonal magnetic pulse fields were generated in turns only one period of sinusoidal waveform using 3-orthogonal magnetic dipole coils, ring counter and analog multiplier. These pulse magnetic fields were measured with 3-orthogonal search coils, of which induced voltages by the x-, y-, and l-dipole sources using S/H amplifier at the time position of maximum induced voltage. Using the developed motion capture sensor, we can measure position of sensor with uncertainty of ${\pm}$0.5% in the measuring range from ${\pm}$0.5 m to ${\pm}$1.5 m.

Exploring the Effectiveness of GAN-based Approach and Reinforcement Learning in Character Boxing Task (캐릭터 복싱 과제에서 GAN 기반 접근법과 강화학습의 효과성 탐구)

  • Seoyoung Son;Taesoo Kwon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.4
    • /
    • pp.7-16
    • /
    • 2023
  • For decades, creating a desired locomotive motion in a goal-oriented manner has been a challenge in character animation. Data-driven methods using generative models have demonstrated efficient ways of predicting long sequences of motions without the need for explicit conditioning. While these methods produce high-quality long-term motions, they can be limited when it comes to synthesizing motion for challenging novel scenarios, such as punching a random target. A state-of-the-art solution to overcome this limitation is by using a GAN Discriminator to imitate motion data clips and incorporating reinforcement learning to compose goal-oriented motions. In this paper, our research aims to create characters performing combat sports such as boxing, using a novel reward design in conjunction with existing GAN-based approaches. We experimentally demonstrate that both the Adversarial Motion Prior [3] and Adversarial Skill Embeddings [4] methods are capable of generating viable motions for a character punching a random target, even in the absence of mocap data that specifically captures the transition between punching and locomotion. Also, with a single learned policy, multiple task controllers can be constructed through the TimeChamber framework.

On-line Trajectory Optimization Based on Automatic Time Warping (자동 타임 워핑에 기반한 온라인 궤적 최적화)

  • Han, Daseong;Noh, Junyong;Shin, Joseph S.
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.3
    • /
    • pp.105-113
    • /
    • 2017
  • This paper presents a novel on-line trajectory optimization framework based on automatic time warping, which performs the time warping of a reference motion while optimizing character motion control. Unlike existing physics-based character animation methods where sampling times for a reference motion are uniform or fixed during optimization in general, our method considers the change of sampling times on top of the dynamics of character motion in the same optimization, which allows the character to effectively respond to external pushes with optimal time warping. In order to do so, we formulate an optimal control problem which takes into account both the full-body dynamics and the change of sampling time for a reference motion, and present a model predictive control framework that produces an optimal control policy for character motion and sampling time by repeatedly solving the problem for a fixed-span time window while shifting it along the time axis. Our experimental results show the robustness of our framework to external perturbations and the effectiveness on rhythmic motion synthesis in accordance with a given piece of background music.