• Title/Summary/Keyword: physics exhibits

Search Result 118, Processing Time 0.029 seconds

One-pot synthesis of highly fluorescent amino-functionalized graphene quantum dots for effective detection of copper ions

  • Tam, Tran Van;Choi, Won Mook
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1255-1260
    • /
    • 2018
  • In this work, a green and simple one-pot route was developed for the synthesis of highly fluorescent aminofunctionalized graphene quantum dots (a-GQDs) via hydrothermal process without any further modification or surface passivation. We synthesized the a-GQDs using glucose as the carbon source and ammonium as a functionalizing agent without the use of a strong acid, oxidant, or other toxic chemical reagent. The as-obtained aGQDs have a uniform size of 3-4 nm, high contents of amino groups, and show a bright green emission with high quantum yield of 32.8%. Furthermore, the a-GQDs show effective fluorescence quenching for $Cu^{2+}$ ions which can serve as effective fluorescent probe for the detection of $Cu^{2+}$. The fluorescent probe using the obtained aGQDs exhibits high sensitivity and selectivity toward $Cu^{2+}$ with the limit of detection as low as 5.6 nM. The mechanism of the $Cu^{2+}$ induced fluorescence quenching of a-GQDs can be attributed to the electron transfer by the formation of metal complex between $Cu^{2+}$ and the amino groups on the surface of a-GQDs. These results suggest great potential for the simple and green synthesis of functionalized GQDs and a practical sensing platform for $Cu^{2+}$ detection in environmental and biological applications.

Climatology of Equatorial Plasma Bubbles in Ionospheric Connection Explorer/Far-UltraViolet (ICON/FUV) Limb Images

  • Park, Jaeheung;Mende, Stephen B.;Eastes, Richard W.;Frey, Harald U.
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.87-98
    • /
    • 2022
  • The Far-UltraViolet (FUV) imager onboard the Ionospheric Connection Explorer (ICON) spacecraft provides two-dimensional limb images of oxygen airglow in the nightside low-latitude ionosphere that are used to determine the oxygen ion density. As yet, no FUV limb imager has been used for climatological analyses of Equatorial Plasma Bubbles (EPBs). To examine the potential of ICON/FUV for this purpose, we statistically investigate small-scale (~180 km) fluctuations of oxygen ion density in its limb images. The seasonal-longitudinal variations of the fluctuation level reasonably conform to the EPB statistics in existing literature. To further validate the ICON/FUV data quality, we also inspect climatology of the ambient (unfiltered) nightside oxygen ion density. The ambient density exhibits (1) the well-known zonal wavenumber-4 signatures in the Equatorial Ionization Anomaly (EIA) and (2) off-equatorial enhancement above the Caribbean, both of which agree with previous studies. Merits of ICON/FUV observations over other conventional data sets are discussed in this paper. Furthermore, we suggest possible directions of future work, e.g., synergy between ICON/FUV and the Global-scale Observations of the Limb and Disk (GOLD) mission.

Selective removal of cationic dye pollutants using coal ash-derived zeolite/zinc adsorbents

  • Chatchai Rodwihok;Mayulee Suwannakaew;Sang Woo Han;Siyu Chen;Duangmanee Wongratanaphisan;Han S. Kim
    • Membrane and Water Treatment
    • /
    • v.14 no.3
    • /
    • pp.121-128
    • /
    • 2023
  • This study introduces a NaOH/Zn-assisted hydrothermal method for the synthesis of zeolites derived from coal ash (CA). A zeolite/Zn adsorbent is successfully prepared by the activation of CA with NaOH and Zn; it is characterized by a high surface area and a negative surface charge.Methylene blue (MB) and methyl orange (MO) are selected as dye pollutants, and their adsorption onto the zeolite/Zn adsorbent is investigated. Results show the high adsorption capacities of MB and MO and that the negative surface charge facilitates electrostatic interactions between the adsorbates and adsorbents. The zeolite/Zn adsorbents shows the selective adsorption of positively charged dye MB via electrostatic interactions between the =NH+ group (positive dipole) and the oxygen functional group of the adsorbents (negative dipole). The selectivity for the positively charged dye is sufficiently high, with the removal efficiency reaching 99.41% within 10 min. By contrast, the negatively charged dye MO exhibits negligible absorption. These findings confirm the role of electrostatic interactions in the adsorption of MB, in addition to the effect of a large surface area. The results of this study are expected to facilitate the development of simple, eco-friendly, and cost-effective zeolite-based adsorptive composites from CA residuals for the selective removal of dye pollutants from CA waste.

Optical Properties of Oxotitanium (Ⅳ) Meso-tetrakis(4-sulfonatophenyl)porphyrin Intercalated into the Layered Double Hydroxides (LDH) Studied by Laser Spectroscopy

  • Ryu, Su-Young;Yoon, Min-Joong;Choy, Jin-Ho;Hwang, Sung-Ho;Frube, Akihiro;Asahi, Tsuyoshi;Hiroshi, Masuhara
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.4
    • /
    • pp.446-452
    • /
    • 2003
  • Some new nanohybrid materials have been synthesized by intercalating the oxotitanium(IV) meso-tetrakis(4- sulfonatophenyl) porphyrin$(O=Ti^{(IV)} TSPP)$ into the Zn/Al layered double hydroxides (LDHs), and their structures and photophysical properties have been investigated by various laser spectroscopic techniques. According to the XRD pattern of the synthesized nanohybrid materials, the macrocycle plane of $O=Ti^{(IV)}$ TSPP are grafted perpendicular to the LDH layers. The $O=Ti^{(IV)}$ TSPP-intercalated LDH exhibits band broadening of the absorption spectrum and a blue shift of Q-band as compared to that observed in solution. Resonance Raman spectral measurements demonstrate that the positively charged LDHs give rise to a slight decrease of the electronic density of the porphyrin ring accompanying a small change of the electronic distribution of the $O=Ti^{(IV)}$ TSPP. Consequently the LDH environment affects the energies of the two highest occupied molecular orbitals (HOMOs) of the $O=Ti^{(IV)}$) TSPP, $a_{1u}$ and $a_{2u}$, producing a mixed orbital character. Being consistent with these electronic structural changes of $O=Ti^{(IV)}$ TSPP in LDH, both the fluorescence spectral change and the fsdiffuse reflectance transient measurements imply that the photoexcitation of the $O=Ti^{(IV)}$ TSPP intercalated into LDH undergoes fast relaxation to the O=Ti(IV) $TSPP^+-LDH^- $charge transfer (CT) state within a few picoseconds, followed by a photoinduced electron transfer between the O=Ti(IV) TSPP and LDHs with a rate constant greater than %1×10^{10}S^{-1}$. No evidence is found for back electron transfer. In conclusion, the $O=Ti^{(IV)}$ TSPP intercalated LDH seems to be a possible candidate for an artificial reaction center for an efficient solar energy conversion system.

In situ UHV TEM studies on nanobubbles in graphene liquid cells

  • Shin, Dongha;Park, Jong Bo;Kim, Yong-Jin;Kim, Sang Jin;Kang, Jin Hyoun;Lee, Bora;Cho, Sung-Pyo;Novoselov, Konstantin S.;Hong, Byung Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.102-102
    • /
    • 2016
  • Water, which is most abundant in Earth surface and very closely related to all forms of living organisms, has a simple molecular structure but exhibits very unique physical and chemical properties. Even though tremendous effort has been paid to understand this nature's core substance, there amazingly still lefts much room for scientist to explore its novel behaviors. Especially, as the scale goes down to nano-regime, water shows extraordinary properties that are not observable in bulk state. One of such interesting features is the formation of nanoscale bubbles showing unusual long-term stability. Nanobubbles can be spontaneously formed in water on hydrophobic surface or by decompression of gas-saturated liquid. In addition, the nanobubbles can be generated during electrochemical reaction at normal hydrogen electrode (NHE), which possibly distorts the standard reduction potential at NHE as the surface nanobubble screens the reaction with electrolyte solution. However, the real-time evolution of these nanobubbles has been hardly studied owing to the lack of proper imaging tools in liquid phase at nanoscale. Here we demonstrate, for the first time, that the behaviors of nanobubbles can be visualized by in situ transmission electron microscope (TEM), utilizing graphene as liquid cell membrane. The results indicate that there is a critical radius that determines the long-term stability of nanobubbles. In addition, we find two different pathways of nanobubble growth: i) Ostwald ripening of large and small nanobubbles and ii) coalescence of similar-sized nanobubbles. We also observe that the nucleation and growth of nanoparticles and the self-assembly of biomolecules are catalyzed at the nanobubble interface. Our finding is expected to provide a deeper insight to understand unusual chemical, biological and environmental phenomena where nanoscale gas-state is involved.

  • PDF

A Hybrid Reader Antenna for Near- and Far-Field RFID in UHF Band (근거리장 및 원거리장용 하이브리드 RFID 리더 안테나)

  • Lee, Chu-Yong;Han, Wone-Keun;Park, Ik-Mo;Choo, Ho-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.174-182
    • /
    • 2009
  • In this paper, we propose a novel hybrid reader antenna using a triangular and rectangular sub-patch for near- and far-field RFID reader in UHF band. The antenna operates at 912 MHz, and the low-cost mass-production is available, since the antenna can be built by printing on a FR-4 substrate. The triangular patch is designed to produce a circularly polarized radiation along the bore-sight direction and the rectangular sub-patch is designed to generate a strong magnetic field over the antenna aperture. The measurement shows Hz field greater than -25 dBA/m(3 cm above the antenna aperture), and exhibits circularly polarized radiation(AR<3 dB) with a radiation gain of 6 dBi.

Temperature and Coverage Dependent Quasi-reversible Two-photon Photoemission of 1-phenyl-1-propyne on Cu(111)

  • Sohn, Young-Ku;Wei, Wei;Huang, Weixin;White, John M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1980-1984
    • /
    • 2011
  • A temperature- and coverage-dependant quasi-reversible change in two-photon photoemission (2PPE) of chemisorbed 1-phenyl-1-propyne (PP) on Cu(111) is reported. For PP on Cu(111) at 300 K probed at a photon energy of 4.13 eV, two broad peaks of comparable intensity show final state energies of 7.25 and 7.75 eV above the Fermi level. The former peak could be assigned to the first image potential state (IS, n = 1) and/or unoccupied molecular orbital (UMO), located at 3.1 eV above the Fermi level. The latter is plausibly attributed to a mix of unoccupied higher-order IS (and/or UMO) and occupied surface state (SS) of Cu(111). With decreasing the temperature, the former 2PPE peak shows a shift in position by about 0.2 eV, and the latter exhibits a dramatic increase in intensity. In the system, intermolecular interactions (and/or order-disorder transition) of PP and substrate lattice temperature may play a significant role in change in photoexcitation lifetime (or excitation cross-section), and the unoccupied molecular orbital (UMO)-metal (IS) charge transfer coupling. Our unique 2PPE results provide a deeper insight for understanding photoexcitation charge transfer with temperature in an organic molecule/metal system.

Dielectric Relaxation of Pb5Ge3-xTixQ11 Single Crystals (Pb5Ge3-xTixQ11 단결정의 유전완화현상)

  • Lee, Chan Ku;Kim, Douk Hoon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.2 no.1
    • /
    • pp.9-16
    • /
    • 1997
  • Ferroelectric $Pb_5Ge_{3-x}Ti_xO_{11}$(x=0, 0.015, 0.021, 0.03) single crystals were obtained from the melt by the Czochralski method. Grown crystals were pale brownish yellow and fully transparent. The dielectric relaxation of the $Pb_5Ge_{3-x}Ti_xO_{11}$ single crystals has been studied in the frequency range from 100 Hz to 10 MHz between $20^{\circ}C$ and $600^{\circ}C$. From the results of the these measurements. the temperature of the permittivity maximum was shifted to low temperature with increasing Ti content and the permittivity maximum decreased with increasing Ti content. The frequency dependent dielectric response of $Pb_5Ge_{3-x}Ti_xO_{11}$ single crystals exhibits a Debye type relaxation, with a distribution of relaxation times. Dielectric behavior is characteristic of carrier-dominated response.

  • PDF

TIME VARIATIONS OF THE RADIAL VELOCITY OF H2O MASERS IN THE SEMI-REGULAR VARIABLE R CRT

  • Sudou, Hiroshi;Shiga, Motoki;Omodaka, Toshihiro;Nakai, Chihiro;Ueda, Kazuki;Takaba, Hiroshi
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.6
    • /
    • pp.157-165
    • /
    • 2017
  • $H_2O$ maser emission at 22 GHz in the circumstellar envelope is one of the good tracers of detailed physics and kinematics in the mass loss process of asymptotic giant branch stars. Long-term monitoring of an $H_2O$ maser spectrum with high time resolution enables us to clarify acceleration processes of the expanding shell in the stellar atmosphere. We monitored the $H_2O$ maser emission of the semi-regular variable R Crt with the Kagoshima 6-m telescope, and obtained a large data set of over 180 maser spectra over a period of 1.3 years with an observational span of a few days. Using an automatic peak detection method based on least-squares fitting, we exhaustively detected peaks as significant velocity components with the radial velocity on a $0.1kms^{-1}$ scale. This analysis result shows that the radial velocity of red-shifted and blue-shifted components exhibits a change between acceleration and deceleration on the time scale of a few hundred days. These velocity variations are likely to correlate with intensity variations, in particular during flaring state of $H_2O$ masers. It seems reasonable to consider that the velocity variation of the maser source is caused by shock propagation in the envelope due to stellar pulsation. However, it is difficult to explain the relationship between the velocity variation and the intensity variation only from shock propagation effects. We found that a time delay of the integrated maser intensity with respect to the optical light curve is about 150 days.

Mossbauer Spectroscopic Study of La2-2xSr2xCu1-xFexO4-y(0≤x≤0.5) Solid-solution

  • Park, Jung-Chul;Byeon, Song-Ho;Kim, Don;Lee, Choong-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.97-100
    • /
    • 2004
  • Tetragonal $K_2NiF_4$-type $La_{2-2x}Sr_{2x}Cu_{1-x}Fe_xO_{4-y}$ solid-solution have been synthesized by citrate based sol-gel method. The valence state of iron was determined by Mossbauer spectroscopy and subsequent iodometric titration clearly showed that the copper ions in this solid-solution are in the mixed valence state Cu(II/III). When x ${\geq}$ 0.3, Fe(III) is competing with the mixture of Cu(II) and Cu(III) and $La_{2-2x}Sr_{2x}Cu_{1-x}Fe_xO_{4-y}$ exhibits a metallic character. No evidence for Cu(II)-O-Fe(IV) ${\leftrightarrow}$ Cu(III)-O-Fe(III) valence degeneracy was observed. In contrast, a small amount of Fe(IV) is observed with increasing x (x = 0.4 and 0.5), revealing a semiconducting behavior. These results suggest that the electronic interaction of Cu(III)-O-Fe(III) contributes greatly to the metallic character, while the electronic interaction of Cu(II)-O-Fe(IV) deteriorates the metallic character of $La_{2-2x}Sr_{2x}Cu_{1-x}Fe_xO_{4-y}$.