DOI QR코드

DOI QR Code

Selective removal of cationic dye pollutants using coal ash-derived zeolite/zinc adsorbents

  • Chatchai Rodwihok (Civil and Environmental Engineering, Konkuk University) ;
  • Mayulee Suwannakaew (Civil and Environmental Engineering, Konkuk University) ;
  • Sang Woo Han (Civil and Environmental Engineering, Konkuk University) ;
  • Siyu Chen (Civil and Environmental Engineering, Konkuk University) ;
  • Duangmanee Wongratanaphisan (Department of Physics and Materials Science, Faculty of Science, Chiang Mai University) ;
  • Han S. Kim (Civil and Environmental Engineering, Konkuk University)
  • Received : 2023.07.17
  • Accepted : 2023.08.21
  • Published : 2023.05.25

Abstract

This study introduces a NaOH/Zn-assisted hydrothermal method for the synthesis of zeolites derived from coal ash (CA). A zeolite/Zn adsorbent is successfully prepared by the activation of CA with NaOH and Zn; it is characterized by a high surface area and a negative surface charge.Methylene blue (MB) and methyl orange (MO) are selected as dye pollutants, and their adsorption onto the zeolite/Zn adsorbent is investigated. Results show the high adsorption capacities of MB and MO and that the negative surface charge facilitates electrostatic interactions between the adsorbates and adsorbents. The zeolite/Zn adsorbents shows the selective adsorption of positively charged dye MB via electrostatic interactions between the =NH+ group (positive dipole) and the oxygen functional group of the adsorbents (negative dipole). The selectivity for the positively charged dye is sufficiently high, with the removal efficiency reaching 99.41% within 10 min. By contrast, the negatively charged dye MO exhibits negligible absorption. These findings confirm the role of electrostatic interactions in the adsorption of MB, in addition to the effect of a large surface area. The results of this study are expected to facilitate the development of simple, eco-friendly, and cost-effective zeolite-based adsorptive composites from CA residuals for the selective removal of dye pollutants from CA waste.

Keywords

Acknowledgement

This study was supported by the National Research Foundation of Korea grant funded by the Korea Ministry of Science and ICT (2022R1I1A1A0105686612206820732501 02 and RS-2023-0020893320682073250001), the Seoul Green Environmental Center (202303500001), and the Konkuk University Research Support Program for the Faculty Sabbatical in 2021.

References

  1. Agbovi, H.K., Wilson, L.D. (2021), "Adsorption processes in biopolymer systems: fundamentals to practical applications", in Natural Polymers-Based Green Adsorbents for Water Treatment, Elsevier.
  2. Ahmad, T., Pandey, V., Husain, S.M., Adiba, Munjal, S. (2022), "Structural and spectroscopic analysis of pure phase hexagonal wurtzite ZnO nanoparticles synthesized by sol-gel. Mater", Today Proc., 49, 1694-1697. https://doi.org/10.1016/j.matpr.2021.07.456
  3. Al-Tohamy, R., Ali, S.S., Li, F., Okasha, K.M., Mahmoud, Y.A.-G., Elsamahy, T., Jiao, H., Fu, Y., Sun, J. (2022), "A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety", Ecotoxicol. Environ. Safe., 231, 113160. https://doi.org/10.1016/j.ecoenv.2021.113160
  4. Ayawei, N., Ebelegi, A.N., Wankasi, D. (2017), "Modelling and interpretation of adsorption isotherms", J. Chem., 3039817. https://doi.org/10.1155/2017/3039817
  5. Balintova, M., Kovacova, Z., Demcak, S., Chernysh, Y., Junakova, N. (2021), "Comparison of sorption efficiency of natural and MnO2 coated zeolite for copper removal from model solutions", Proceedings of the OP Conference Series: Earth and Environmental Science, 900(1), 12003. https://doi.org/10.1088/1755-1315/900/1/012003
  6. Basha, I.K., Abd El-Monaem, E.M., Khalifa, R.E., Omer, A.M., Eltaweil, A.S. (2022), "Sulfonated graphene oxide impregnated cellulose acetate floated beads for adsorption of methylene blue dye: Optimization using response surface methodology", Sci. Rep., 12, 9339. https://doi.org/10.1038/s41598-022-13105-4
  7. Zol, M.N.B., Shuhaim, M.F.B., Yu1c, J., Lim, Y., Choe, J.W., Bae, S. and Kim, H. S. (2020), "Immobilization of oxidative enzymes onto Cu-activated zeolite to catalyze 4-chlorophenol decomposition", Membr. Water Treat., 11(3), 195-200. https://doi.org/10.12989/MWT.2020.11.3.195
  8. David, P.S., Karunanithi, A., Fathima, N.N. (2020), "Improved filtration for dye removal using keratin-polyamide blend nanofibrous membranes", Environ. Sci. Pollut. Res., 27, 45629-45638. https://doi.org/10.1007/s11356-020-10491-y
  9. He, X., Yang, D.P., Zhang, X., Liu, M., Kang, Z., Lin, C., Jia, N., Luque, R. (2019), "Waste eggshell membrane-templated CuOZnO nanocomposites with enhanced adsorption, catalysis and antibacterial properties for water purification", Chem. Eng. J., 369, 621-633. https://doi.org/10.1016/j.cej.2019.03.047
  10. Ihaddaden, S., Aberkane, D., Boukerroui, A., Robert, D. (2022), "Removal of methylene blue (basic dye) by coagulationflocculation with biomaterials (bentonite and Opuntia ficus indica)", J. Water Proc. Eng., 49, 102952. https://doi.org/10.1016/j.jwpe.2022.102952
  11. Januario, E.F.D., Vidovix, T.B., Bergamasco, R., Vieira, A.M.S. (2021), "Performance of a hybrid coagulation/flocculation process followed by modified microfiltration membranes for the removal of solophenyl blue dye", Chem. Eng. Proc., 168, 108577. https://doi.org/10.1016/j.cep.2021.108577
  12. Jawad, A.H., Abdulhameed, A.S., Reghioua, A., Yaseen, Z.M. (2020), "Zwitterion composite chitosan-epichlorohydrin/zeolite for adsorption of methylene blue and reactive red 120 dyes", Int. J. Biol. Macromol., 163, 756-765. https://doi.org/10.1016/j.ijbiomac.2020.07.014
  13. Joseph, J., Radhakrishnan, R.C., Johnson, J.K., Joy, S.P., Thomas, J. (2020), "Ion-exchange mediated removal of cationic dyestuffs from water using ammonium phosphomolybdate", Mater. Chem. Phys., 242, 122488. https://doi.org/10.1016/j.matchemphys.2019.122488
  14. Kaur, P., Rajani, N., Kumawat, P., Singh, N., Kushwaha, J.P. (2018), "Performance and mechanism of dye extraction from aqueous solution using synthesized deep eutectic solvents", Colloids Surf. A, 539, 85-91. https://doi.org/10.1016/j.colsurfa.2017.12.013
  15. Kazemi, J., Javanbakht, V. (2020), "Alginate beads impregnated with magnetic Chitosan@Zeolite nanocomposite for cationic methylene blue dye removal from aqueous solution", Int. J. Biol. Macromol., 154, 1426-1437. https://doi.org/10.1016/j.ijbiomac.2019.11.024
  16. Lee, W.K.W., van Deventer, J.S.J. (2003), "Use of infrared spectroscopy to study geopolymerization of heterogeneous amorphous aluminosilicates", Langmuir, 19, 8726-8734. https://doi.org/10.1021/la026127e
  17. Lellis, B., Favaro-Polonio, C.Z., Pamphile, J.A., Polonio, J.C. (2019), "Effects of textile dyes on health and the environment and bioremediation potential of living organisms", Biotechnol. Res. Innov., 3, 275-290. https://doi.org/10.1016/j.biori.2019.09.001
  18. Li, C.J., Zhang, Y.J., Chen, H., He, P.Y., Zhang, Y., Meng, Q. (2021), "Synthesis of fly ash cenospheres-based hollow ABW zeolite for dye removal via the coupling of adsorption and photocatalysis", Adv. Powder Technol., 32, 3436-3446. https://doi.org/10.1016/j.apt.2021.07.029
  19. Li, H., Zheng, F., Wang, J., Zhou, J., Huang, X., Chen, L., Hu, P., Gao, J., Zhen, Q., Bashir, S., Liu, J.L. (2020), "Facile preparation of zeolite-activated carbon composite from coal gangue with enhanced adsorption performance", Chem. Eng. J., 390, 124513. https://doi.org/10.1016/j.cej.2020.124513
  20. Li, K.M., Jiang, J.G., Tian, S.C., Chen, X.J., Yan, F. (2014), "Influence of silica types on synthesis and performance of amine-silica hybrid materials used for CO2 capture", J. Phys. Chem. C, 118, 2454-2462. https://doi.org/10.1021/jp408354r
  21. Lim, J.M., Park, J., Park, J.T., Bae, S. (2019), "Preparation of quasi-solid-state electrolytes using a coal fly ash derived zeolite-X and -A for dye-sensitized solar cells", J. Ind. Eng. Chem., 71, 378-386. https://doi.org/10.1016/j.jiec.2018.11.049
  22. Lim, Y., Yu, J., Park, S., Kim, M., Chen, S., Bakri, N.A.B., Sabri, N.I.A.B.M., Bae, S., Kim, H.S. (2020), "Development of biocatalysts immobilized on coal ash-derived Ni-zeolite for facilitating 4-chlorophenol degradation", Bioresour Technol., 307, 123201. https://doi.org/10.1016/j.biortech.2020.123201
  23. Lin, L., Lin, Y., Li, C., Wu, D., Kong, H. (2016), "Synthesis of zeolite/hydrous metal oxide composites from coal fly ash as efficient adsorbents for removal of methylene blue from water", Int. J. Miner. Proc., 148, 32-40. https://doi.org/10.1016/j.minpro.2016.01.010
  24. Madan, S., Shaw, R., Tiwari, S., Tiwari, S.K. (2019), "Adsorption dynamics of Congo red dye removal using ZnO functionalized high silica zeolitic particles", Appl. Surf. Sci., 487, 907-917. https://doi.org/10.1016/j.apsusc.2019.04.273
  25. Molla, A., Li, Y., Mandal, B., Kang, S.G., Hur, S.H., Chung, J.S. (2019), "Selective adsorption of organic dyes on graphene oxide: Theoretical and experimental analysis", Appl. Surf. Sci., 464, 170-177. https://doi.org/10.1016/j.apsusc.2018.09.056
  26. Mote, V.D., Huse, V.R., Purushotham, Y., Shah, S.S., Dole, B.N. (2012), "Synthesis and characterization of Mn doped ZnS nanometer-sized particles", AIP Conf. Proc., 1447, 217-218. https://doi.org/10.1063/1.4709957
  27. Nyankson, E., Adjasoo, J., Efavi, J.K., Yaya, A., Manu, G., Kingsford, A., Abrokwah, R.Y. (2020), "Synthesis and kinetic adsorption characteristics of Zeolite/CeO2 nanocomposite", Sci. African, 7, e00257. https://doi.org/10.1016/j.sciaf.2019.e00257
  28. Park, J., Hwang, Y., Bae, S. (2019), "Nitrate reduction on surface of Pd/Sn catalysts supported by coal fly ash-derived zeolites", J. Hazard. Mater., 374, 309-318. https://doi.org/10.1016/j.jhazmat.2019.04.051
  29. Park, S., Kim, M., Lim, Y., Yu, J., Chen, S., Woo, S.W., Yoon, S., Bae, S., Kim, H.S. (2021), "Characterization of rare earth elements present in coal ash by sequential extraction", J. Hazard. Mater., 402, 123760. https://doi.org/10.1016/j.jhazmat.2020.123760
  30. Praveen, S., Gokulan, R., Pushpa, T.B., Jegan, J. (2021), "Technoeconomic feasibility of biochar as biosorbent for basic dye sequestration", J. Indian Chem. Soc., 98, 100107. https://doi.org/https://doi.org/10.1016/j.jics.2021.100107
  31. Querol, X., Moreno, N., Umana, J.C., Alastuey, A., Hernandez, E., Lopez-Soler, A., Plana, F. (2002), "Synthesis of zeolites from coal fly ash: an overview", Int. J. Coal Geol., 50, 413-423. https://doi.org/10.1016/S0166-5162(02)00124-6
  32. Rakanovic, M., Vukojevic, A., Savanovic, M.M., Armakovic, S., Pelemis, S., Zivic, F., Sladojevic, S., Armakovic, S.J. (2022), "Zeolites as adsorbents and photocatalysts for removal of dyes from the aqueous environment", Molecules, 27(19), 6582. https://doi.org/10.3390/molecules27196582
  33. Rodwihok, C., Charoensri, K., Wongratanaphisan, D., Choi, W.M., Hur, S.H., Park, H.J., Chung, J.S. (2021a), "Improved photocatalytic activity of surface charge functionalized ZnO nanoparticles using aniline", J. Mater. Sci. Technol., 76, 1-10. https://doi.org/10.1016/j.jmst.2020.09.041
  34. Rodwihok, C., Suwannakaew, M., Han, S.W., Lim, Y.J., Park, S.Y., Woo, S.W., Choe, J.W., Wongratanaphisan, D., Kim, H.S. (2023), "Effective removal of hazardous organic contaminant using integrated photocatalytic adsorbents: Ternary zinc oxide/zeolite-coal fly ash/reduced graphene oxide nanocomposites", Colloids Surf. A, 662, 131044. https://doi.org/10.1016/j.colsurfa.2023.131044
  35. Rodwihok, C., Suwannakeaw, M., Charoensri, K., Wongratanaphisan, D., Woon Woo, S., Kim, H.S. (2021b), "Alkali/zinc-activated fly ash nanocomposites for dye removal and antibacterial applications", Bioresour. Technol., 331, 125060. https://doi.org/10.1016/j.biortech.2021.125060
  36. Rubab, M., Bhatti, I.A., Nadeem, N., Shah, S.A.R., Yaseen, M., Naz, M.Y., Zahid, M. (2021), "Synthesis and photocatalytic degradation of rhodamine B using ternary zeolite/WO3/Fe3O4 composite", Nanotechnology, 32, 345705. https://doi.org/10.1088/1361-6528/ac037f
  37. Saruchi, Kumar, V. (2019), "Adsorption kinetics and isotherms for the removal of rhodamine B dye and Pb+2 ions from aqueous solutions by a hybrid ion-exchanger", Arab. J. Chem., 12, 316-329. https://doi.org/10.1016/j.arabjc.2016.11.009
  38. Shui, Z., Yao, L., Pu, X., Yang, L., Jiang, W., Jiang, X. (2020), "Synthesis of a novel zeolite-activated carbon composite using lithium-silicon-powder waste for ammonia-nitrogen and methylene blue removal", Ind. Eng. Chem. Res., 59, 14616-14624. https://doi.org/10.1021/acs.iecr.0c00617
  39. Singh, N.J., Wareppam, B., Kumar, A., Singh, K.P., Garg, V.K., Oliveira, A.C., Singh, L.H. (2023), "Zeolite incorporated iron oxide nanoparticle composites for enhanced congo red dye removal", J. Mater. Res., 38, 1149-1161. https://doi.org/10.1557/s43578-022-00859-w
  40. Supelano, G.I., Gomez Cuaspud, J.A., Moreno-Aldana, L.C., Ortiz, C., Trujillo, C.A., Palacio, C.A., Parra Vargas, C.A., Mejia Gomez, J.A. (2020), "Synthesis of magnetic zeolites from recycled fly ash for adsorption of methylene blue", Fuel, 263, 116800. https://doi.org/10.1016/j.fuel.2019.116800
  41. Visa, M., Andronic, L., Duta, A. (2015a), "Fly ash-TiO2 nanocomposite material for multi-pollutants wastewater treatment", J. Environ. Manage., 150, 336-343. https://doi.org/10.1016/j.jenvman.2014.10.026
  42. Visa, M., Bogatu, C., Duta, A. (2015b), "Tungsten oxide - fly ash oxide composites in adsorption and photocatalysis", J. Hazard. Mater., 289, 244-256. https://doi.org/10.1016/j.jhazmat.2015.01.053
  43. Wang, X., Jiang, J., Gao, W. (2022), "Reviewing textile wastewater produced by industries: characteristics, environmental impacts, and treatment strategies", Water Sci. Technol., 85, 2076-2096. https://doi.org/10.2166/wst.2022.088
  44. Zafar, M.N., Dar, Q., Nawaz, F., Zafar, M.N., Iqbal, M. and Nazar, M.F. (2019), "Effective removal of azo dyes over spherical ZnO nanoparticles", J. Mater. Res. Technol., 8, 713-725. https://doi.org/10.1016/j.jmrt.2018.06.002
  45. Zhang, Y., Tang, Q., Chen, S., Gu, F., Zhene, L. (2018), "Heavy metal adsorption of a novel membrane material derived from senescent leaves: Kinetic, equilibrium and thermodynamic studies", Membr. Water Treat., 9(2), 95-104. https://doi.org/10.12989/mwt.2018.9.2.095
  46. Zol, M.N. Bin, Shuhaimi, M.F. Bin, Yu, J., Lim, Y., Choe, J.W., Bae, S., Kim, H.S. (2020), "Immobilization of oxidative enzymes onto Cu-activated zeolite to catalyze 4-chlorophenol decomposition", Membr. Water Treat., 11(3), 195-200. https://doi.org/10.12989/mwt.2020.11.3.195