DOI QR코드

DOI QR Code

Optical Properties of Oxotitanium (Ⅳ) Meso-tetrakis(4-sulfonatophenyl)porphyrin Intercalated into the Layered Double Hydroxides (LDH) Studied by Laser Spectroscopy

  • Ryu, Su-Young (Department of Chemistry, Chungnam National University) ;
  • Yoon, Min-Joong (Department of Chemistry, Chungnam National University) ;
  • Choy, Jin-Ho (National Nanohybrid Materials Laboratory, School of Chemistry and Molecular Engineering,Seoul National University) ;
  • Hwang, Sung-Ho (National Nanohybrid Materials Laboratory, School of Chemistry and Molecular Engineering,Seoul National University) ;
  • Frube, Akihiro (Department of Applied Physics, Osaka University) ;
  • Asahi, Tsuyoshi (Department of Applied Physics, Osaka University) ;
  • Hiroshi, Masuhara (Department of Applied Physics, Osaka University)
  • Published : 2003.04.20

Abstract

Some new nanohybrid materials have been synthesized by intercalating the oxotitanium(IV) meso-tetrakis(4- sulfonatophenyl) porphyrin$(O=Ti^{(IV)} TSPP)$ into the Zn/Al layered double hydroxides (LDHs), and their structures and photophysical properties have been investigated by various laser spectroscopic techniques. According to the XRD pattern of the synthesized nanohybrid materials, the macrocycle plane of $O=Ti^{(IV)}$ TSPP are grafted perpendicular to the LDH layers. The $O=Ti^{(IV)}$ TSPP-intercalated LDH exhibits band broadening of the absorption spectrum and a blue shift of Q-band as compared to that observed in solution. Resonance Raman spectral measurements demonstrate that the positively charged LDHs give rise to a slight decrease of the electronic density of the porphyrin ring accompanying a small change of the electronic distribution of the $O=Ti^{(IV)}$ TSPP. Consequently the LDH environment affects the energies of the two highest occupied molecular orbitals (HOMOs) of the $O=Ti^{(IV)}$) TSPP, $a_{1u}$ and $a_{2u}$, producing a mixed orbital character. Being consistent with these electronic structural changes of $O=Ti^{(IV)}$ TSPP in LDH, both the fluorescence spectral change and the fsdiffuse reflectance transient measurements imply that the photoexcitation of the $O=Ti^{(IV)}$ TSPP intercalated into LDH undergoes fast relaxation to the O=Ti(IV) $TSPP^+-LDH^- $charge transfer (CT) state within a few picoseconds, followed by a photoinduced electron transfer between the O=Ti(IV) TSPP and LDHs with a rate constant greater than %1×10^{10}S^{-1}$. No evidence is found for back electron transfer. In conclusion, the $O=Ti^{(IV)}$ TSPP intercalated LDH seems to be a possible candidate for an artificial reaction center for an efficient solar energy conversion system.

Keywords

References

  1. Ozin, G. A. Adv. Mater. 1992, 4, 612-649. https://doi.org/10.1002/adma.19920041003
  2. Lvov, Y.; Ariga, K.; Ichinose, I.; Kunitake, T. J. Am. Chem. Soc. 1995, 117, 6117. https://doi.org/10.1021/ja00127a026
  3. Lvov, Y.; Ariga, K.; Ichinose, I.; Kunitake, T. Langmuir 1996, 12, 3038-3044. https://doi.org/10.1021/la951002d
  4. Costantino, U.; Casciola, M.; Pani, G.; Jones, D. J.; Roziere, J. Solid State Ionics 1997, 97, 261-267. https://doi.org/10.1016/S0167-2738(97)00042-8
  5. Pinnavaia, T. J.; Chibwe, M.; Constantino, V. R. L.; Yun, S. K.Applied Clay Science 1995, 10, 117. https://doi.org/10.1016/0169-1317(95)00010-2
  6. Chibwe, M.; Ukrainczyk, L.; Boyd, S. A.; Pinnavaia, T. J. J. Mol. Cat. A: Chem. 1996, 113, 249-256. https://doi.org/10.1016/S1381-1169(96)00051-9
  7. Gaillon, L.; Bedioui, F.; Devynck, J. J. Electroanal. Chem. 1993, 347, 435-442. https://doi.org/10.1016/0022-0728(93)80108-T
  8. Constantino, V. R. L.; Pinnavaia, T. J. Inorg. Chem. 1995, 34, 883-892. https://doi.org/10.1021/ic00108a020
  9. Gaillon, L.; Bedioui, F.; Devynck, J.; Battioni, P.; Barloy, I.;Mansuy, D. J. Electroanal. Chem. 1991, 303, 283. https://doi.org/10.1016/0022-0728(91)85136-D
  10. Whitten, D. G. Acc. Chem. Res. 1980, 13, 83. https://doi.org/10.1021/ar50147a004
  11. Gratzel, M. Acc. Chem. Res. 1981, 14, 376. https://doi.org/10.1021/ar00072a003
  12. Kalyanasundaram, K.; Neumann-Spallart, M. J. Phys. Chem. 1982, 86, 5163-5169. https://doi.org/10.1021/j100223a022
  13. Perez-Bernal, M. E.; Ruano-Casero, R.; Pinnavaia, T. J. Catal. Lett. 1991, 11, 55. https://doi.org/10.1007/BF00866901
  14. Chibwe, M.; Pinnavaia, T. J. J. Chem. Soc., Chem. Commun. 1993, 278-280.
  15. The Porphyrins; Dolphin, D., Ed.; Academic Press: New York, Sanfransisco, London, 1979; Vols. V, Chapter 9.
  16. Sauer, K. Acc. Chem. Res. 1980, 13, 249. https://doi.org/10.1021/ar50152a001
  17. Calvin, M. Acc. Chem. Res. 1978, 11, 869.
  18. Seely, C. R. Photochem. Photobiol. 1978, 27, 639. https://doi.org/10.1111/j.1751-1097.1978.tb07658.x
  19. Furube, A.; Asahi, T.; Masuhara, H.; Yamashita, H.; Anpo, M. J. Phys. Chem. B 1999, 103, 3120-3127. https://doi.org/10.1021/jp984162h
  20. Asahi, T.; Furube, A.; Fukimura, H.; Ichikawa, M.; Masuhara, H.Rev. Sci. Instrum. 1998, 69, 361. https://doi.org/10.1063/1.1148668
  21. Park, I. Y.; Kuroda, K.; Kato, C. Chem. Lett. 1989, 2057.
  22. Marro, M. A. T.; Thomas, J. K. J. Photochem. Photobiol. A.: Chem. 1993, 72, 251. https://doi.org/10.1016/1010-6030(93)80021-Z
  23. Bauer, R. K.; Borenstein, R.; De Mayo, P.; Okada, K.; Rafalska, M; Ware, W. R.; Wu, K. C. J. Am. Chem. Soc. 1982, 104, 4635. https://doi.org/10.1021/ja00381a022
  24. Sung-Suh, H. M.; Luan, Z.; Kevan, L. J. Phys. Chem. B 1997, 101, 10455. https://doi.org/10.1021/jp972772w
  25. Leermkers, P. A.; Thomas, H. T.; Weis, L. D.; James, F. C. J. Am. Chem. Soc. 1966, 88, 5075. https://doi.org/10.1021/ja00974a006
  26. Ron, A.; Folman, M.; Schnepp, O. J. Phys. Chem. 1962, 36, 2449. https://doi.org/10.1063/1.1732907
  27. Berezin, B. D. Cordination Compounds of Porphyrins andPhthalocyanines; Wiley Interscience: New york, 1978; p 209.
  28. Xu, W.; Guo, H.; Akins, D. L. J. Phys. Chem. B 2001, 105, 1543. https://doi.org/10.1021/jp003863n
  29. Kathleen, A.; Macor, R.; Czernuszewicz, S.; Spiro, T. G. Inorg. Chem. 1990, 29, 1996. https://doi.org/10.1021/ic00335a044
  30. Wynne, K.; LeCours, S. M.; Galli, C.; Therien, M. J.; Hochstrasser, R. M. J. Am. Chem. Soc. 1995, 117, 3749-3753. https://doi.org/10.1021/ja00118a011
  31. Dalton, J.; Milgrom, L. R. J. Chem. Soc., Chem.Commun. 1979, 609-610.
  32. Bergkamp, M. A.; Dalton, J.; Netzel, T. L. J. Am. Chem. Soc. 1982, 104, 253-259. https://doi.org/10.1021/ja00365a046
  33. Rodriguez, J.; Kirmaier, D.; Johnson, M. R.; Friesner, R. A.; Holten, D.; Sessler, J. L. J. Am. Chem. Soc. 1991, 113, 1652-1659. https://doi.org/10.1021/ja00005a032
  34. Yang, S. I.; Seth, J.; Balasubraamanian, T.; Kim, D.; Lindsey, J. S.; Holten, D.; Bocian, D. F. J. Am. Chem. Soc. 1999, 121, 4008-4018. https://doi.org/10.1021/ja9842060
  35. Spiro, T. G.; Czernuszewicz, R. S.; Li, X.-Y. Coordination Chemistry Reviews 1990, 100, 541-571. https://doi.org/10.1016/0010-8545(90)85019-O
  36. Parthasarathi, N.; Hansen, C.; Yamaguchi, C.; Spiro, T. G. J. Am. Chem. Soc. 1987, 109, 3865. https://doi.org/10.1021/ja00247a009
  37. Gouterman, M. J. Mol. Spectrosc. 1961, 6, 138. https://doi.org/10.1016/0022-2852(61)90236-3
  38. Prendergast, K.; Spiro, T. G. J. Phys. Chem. 1991, 95, 9728-9736. https://doi.org/10.1021/j100177a025
  39. Reed, R. A.; Purrello, R.; Prendergast, K.; Spiro, T. G. J. Phys. Chem. 1991, 95, 9720-9727. https://doi.org/10.1021/j100177a024
  40. The Porphyrins; Dolphin, D., Ed.; Academic Press: New York,San Fransisco, London, 1978; Vol. III, Chapter 1, p 133.
  41. Khairutdinov, R. F. J. Phys. Chem. B 1999, 103(5), 761-769. https://doi.org/10.1021/jp980869s
  42. Czernuszewicz, R. S.; Macor, K. A.; Li, X.-Y.; Kincaid, J. R.; Spiro, T. G. J. Am. Chem. Soc. 1989, 111, 3860. https://doi.org/10.1021/ja00193a017
  43. Spellane, P. J.; Gouterman, M.; Antepas, A.; Kim, S.; Liu, Y. C. Inorg. Chem. 1980, 19, 386. https://doi.org/10.1021/ic50204a021
  44. Mochida, I.; Tsuji, K.; Suetsugu, K.; Fujitsu, H.; Takeshida, K. J. Am. Chem. Soc. 1980, 84, 3159.
  45. Ukrainczyk, J.; Chihwe, M.; Pinnavaia, T. J.; Boyd, S. A. J. Phys. Chem. 1994, 98, 2668. https://doi.org/10.1021/j100061a026
  46. Carrado, K. A.; Forman, J. E.; Botto, R. E.; Winans, R. E. Chem. Mater. 1993, 5, 472. https://doi.org/10.1021/cm00028a013
  47. Meyn, M.; Beneke, K.; Lagaly, G. Inorganic. Chem. 1990, 29, 5201. https://doi.org/10.1021/ic00351a013
  48. Guenane, M.; Forano, C.; Besse, J. P. Mater. Sci. Forum 1994, 343, 152.
  49. Shelnutt, J. A. J. Phys. Chem. 1984, 88, 4989.
  50. Shelnutt, J. A.; Dobry, M. M. J. Phys. Chem. 1984, 88, 4981.
  51. Yang, J. H.; Chen, Y. M.; Ren, Y. L.; Bai, Y. B.; Wu, Y.; Jang, Y. S.; Su, Z. M.; Yang, W. S.; Wang, Y. Q.; Zao, B.; Li, T. J. J. Photochem. & Photobiol. A: Chemistry 2000, 134, 1-7. https://doi.org/10.1016/S1010-6030(00)00239-2
  52. The Porphyrins; Dolphin, D., Ed.; Academic Press: New York, Sanfransisco, London, 1979; Vols. V, Chapter 7, 9.
  53. Lemke, C.; Schweitzer-Stenner, R.; Shelnutt, J. A.; Quirke, J. M. E.; Dreybrodt, W. J. Phys. Chem. A 2001, 105(27), 6668-6679. https://doi.org/10.1021/jp011137u

Cited by

  1. Layered Hydroxide-Porphyrin Hybrid Materials: Synthesis, Structure, and Properties vol.2012, pp.32, 2012, https://doi.org/10.1002/ejic.201200400
  2. LDHs Filled with Polyvinyl Chloride Composite at Low Microwave Frequencies vol.2014, pp.1687-8442, 2014, https://doi.org/10.1155/2014/647120
  3. ) complexes vol.5, pp.72, 2015, https://doi.org/10.1039/C5RA07616A
  4. Synthesis and Characterization of Magnesium-Aluminum Layered Double Hydroxides Containing (Tetrasulfonated porphyrin)cobalt vol.2005, pp.8, 2005, https://doi.org/10.1002/ejic.200400875
  5. Synthesis and Characterization of a Tetraaza Macrocyclic Nickel(II) Complex Bearing Two Amidine Pendant Arms: Unprecedented Strong Metal-Pendant Arm Interaction vol.26, pp.11, 2003, https://doi.org/10.5012/bkcs.2005.26.11.1861
  6. Synthesis of CuO Wires from Layered Organic-Inorganic Hybrids vol.26, pp.12, 2005, https://doi.org/10.5012/bkcs.2005.26.12.2054
  7. Step-wise Anion-Exchange in Layered Double Hydroxide Using Solvothermal Treatment vol.26, pp.2, 2003, https://doi.org/10.5012/bkcs.2005.26.2.248
  8. Porphyrin photochemistry in inorganic/organic hybrid materials: Clays, layered semiconductors, nanotubes, and mesoporous materials vol.7, pp.2, 2003, https://doi.org/10.1016/j.jphotochemrev.2006.04.002
  9. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  10. Modification of Mg/Al-layered double hydroxide withL-aspartic acid containing dicarboxylic acid and its application in the enhancement of the thermal stability of chiral poly(amide-imid vol.4, pp.79, 2003, https://doi.org/10.1039/c4ra05754f