• Title/Summary/Keyword: physicochemical variables

Search Result 86, Processing Time 0.023 seconds

Long-term Changes of Physicochemical Water Quality in Lake Youngrang, Korea

  • Bhattrai, Bal Dev;Kwak, Sungjin;Choi, Kwansoon;Heo, Woomyung
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.169-185
    • /
    • 2017
  • Physicochemical properties of water quality were analyzed to understand the long-term variations in Lake Youngrang from 1998 to 2015. Nonparametric statistical methods were applied to deduct correlation among water quality parameters and water quality trend. In total observations(N=64), the Secchi depth (SD) transparency showed significant positive correlation with salinity (r=0.458) and highly significant negative correlation with chlorophyll-a (r= -0.649) for p<0.0001 in two-tailed test of Spearman's rank correlation. Significant negative correlations of SD were observed with chemical oxygen demand (COD), total phosphorus (TP) and total nitrogen (TN). These correlation patterns were very similar in rainy (N=25) and non-rainy (N=39) periods too. Chlorophyll-a (Chl-a) had significant correlation with COD. Sen's slope test was performed along with Mann-Kendall trend test (significance ${\alpha}=0.05$, two-tailed) to find water quality trend. Positive trends were observed for SD and salinity with Sen's slopes 0.012 and 0.385, respectively (p<0.0001). Negative significant trends were observed for total nitrogen (TN) and Chl-a with Sen's slopes -0.02 (p<0.0001) and -0.346 (p=0.0010), respectively. Temperature, COD and phosphorus components had no trends. Carlson's trophic state index (TSI) for SD, TP and Chl-a were obtained in the ranges of 46~80, 37~82 and 39~82, respectively. Trophic index values suggest that Lake Youngrang was mesoeutrophic to eutrophic and there could be possibility of anoxia during the summer and dominance of blue-green algae. Excess nutrient inputs from external and internal sources were the causes of eutrophication in this lake. The findings of this study would be helpful to recognize water quality variables to manage the water body.

Quantitative structure-activity relationship of N-substituted phenyl 5-chloro-1,3-dimethylpyrazol-4-carboxamides (N-치환 phenyl 5-chloro-1,3-dimethylpyrazole-4-carboxamide의 정량적구조활성상관관계)

  • Kim, Yong-Whan;Park, Chang-Kyu
    • Applied Biological Chemistry
    • /
    • v.35 no.5
    • /
    • pp.382-388
    • /
    • 1992
  • Mycelial growth inhibition activity of forty-one N-substituted phenyl 5-chloro-1,3-dimethylpyrazole-4-carboxamides against Rhizoctonia solani was analysed quantitatively by multiple regression analysis using physicochemical parameters of substituents as independent variables and $pEC_{50}$ as dependent variable. As a result, a quantitative structure-activity relationship was formulated using eight physicochemical parameters, which explains 83% of variance of the fungicidal activity. The most important parameter for the biological activity was log k', as related to the penetration and transport processes in the biological system. The activity also correlated with other hydrophobic parameters$({\pi}_2,\;{\pi}_3)$, an electronic parameter$({\Sigma}{\sigma})$, and steric parameters$(STERIMOL\;parameters\;L_3,\;L_4)$.

  • PDF

Development and evaluation of probiotic delivery systems using the rennet-induced gelation of milk proteins

  • Ha, Ho-Kyung;Hong, Ji-Young;Ayu, Istifiani Lola;Lee, Mee-Ryung;Lee, Won-Jae
    • Journal of Animal Science and Technology
    • /
    • v.63 no.5
    • /
    • pp.1182-1193
    • /
    • 2021
  • The aims of this study were to develop a milk protein-based probiotic delivery system using a modified rennet-induced gelation method and to determine how the skim milk powder concentration level and pH, which can affect the rennet-induced intra- and inter-molecular association of milk proteins, affect the physicochemical properties of the probiotic delivery systems, such as the particle size, size distribution, encapsulation efficiency, and viability of probiotics in simulated gastrointestinal tract. To prepare a milk protein-based delivery system, skim milk powder was used as a source of milk proteins with various concentration levels from 3 to 10% (w/w) and rennet was added to skim milk solutions followed by adjustment of pH from 5.4 or 6.2. Lactobacillus rhamnosus GG was used as a probiotic culture. In confocal laser scanning microscopic images, globular particles with a size ranging from 10 ㎛ to 20 ㎛ were observed, indicating that milk protein-based probiotic delivery systems were successfully created. When the skim milk powder concentration was increased from 3 to 10% (w/w), the size of the delivery system was significantly (p < 0.05) increased from 27.5 to 44.4 ㎛, while a significant (p < 0.05) increase in size from 26.3 to 34.5 ㎛ was observed as the pH was increased from 5.4 to 6.4. An increase in skim milk powder concentration level and a decrease in pH led to a significant (p < 0.05) increase in the encapsulation efficiency of probiotics. The viability of probiotics in a simulated stomach condition was increased when probiotics were encapsulated in milk protein-based delivery systems. An increase in the skim milk powder concentration and a decrease in pH resulted in an increase in the viability of probiotics in simulated stomach conditions. It was concluded that the protein content by modulating skim milk powder concentration level and pH were the key manufacturing variables affecting the physicochemical properties of milk protein-based probiotic delivery systems.

Effects of porcine blood plasma on the emulsion stability, physicochemical characteristics and textural attributes of emulsified pork batter

  • Jin, Sangkeun;Choi, Jungseok
    • Journal of Animal Science and Technology
    • /
    • v.63 no.1
    • /
    • pp.170-179
    • /
    • 2021
  • This study was conducted to determine the effects of addition of porcine blood plasma (PBP) to the emulsified pork batter as a substitute for the soy protein isolate (SPI) or sodium caseinate (SC) on the emulsion stability and physicochemical and textural properties of the emulsified pork batter. A total of 10 treatments were no addition and 0.5%, 1.0%, and 1.5% addition with each of SPI, SC, and PBP. The moisture and fat losses of the pork emulsion after cooking decreased with increasing percentage of any of SPI, SC, and PBP (p < 0.05). Further, moisture loss was less for the PBP treatment than for SPI and SC (p < 0.05). The lightness, redness, and whiteness of the emulsified pork batter decreased (p < 0.05) due to any of the SPI, SC, and PBP treatments whereas the yellowness and the chroma and hue values increased. The lightness, redness, yellowness, and chroma and hue values differed also among the SPI, SC, and PBP treatments (p < 0.05); however, the numerical difference between any two types of substitutes was less than 8% of the two corresponding means in all of these variables. Textural properties, including the hardness, cohesiveness, springiness, gumminess, chewiness, and adhesiveness, were not influenced by any of the SPI, SC, and PBP treatments (p > 0.05), except for greater gumminess and chewiness for the PBP treatment than for SC. The present results indicate that PBP is comparable or even superior to SPI or SC in its emulsion-stabilizing effect and therefore could be used a substitute for the latter as a non-protein ingredient of pork emulsion batter.

Encapsulation of Lactobacillus rhamnosus GG Using Milk Protein-Based Delivery Systems: Effects of Reaction Temperature and Holding Time on Their Physicochemical and Functional Properties

  • Ayu, Istifiani Lola;Ha, Ho-Kyung;Yang, Dong-Hun;Lee, Won-Jae;Lee, Mee-Ryung
    • Food Science of Animal Resources
    • /
    • v.41 no.5
    • /
    • pp.894-904
    • /
    • 2021
  • Microencapsulation is a protective process for materials that are sensitive to harsh conditions encounted during food manufacture and storage. The objectives of this research were to manufacture a milk protein-based delivery system (MPDS) containing Lactobacillus rhamnosus GG (LGG) using skim milk powder and to investigate the effects of manufacturing variables, such as reaction temerpature and holding time, on the physiccohemical properties of MPDS and viability of LGG under dairy food processing and storage conditions. MPDS was prepared using chymosin at varing reaction temperatures from 25℃ to 40℃ for 10 min and holding times from 5 to 30 min at 25℃. The morphological and physicochemical properties of MPDS were evaluated using a confocal laser scanning microscope and a particle size analyzer, respectively. The number of viable cells were determined using the standard plate method. Spherical-shaped MPDS particles were successfully manufactured. The particle size of MPDS was increased with a decrease in reaction temperature and an increase in holding time. As reaction temperature and holding time were increased, the encapsulation efficiency of LGG in MPDS was increased. During pasteurization, the use of MPDS resulted in an increase in the LGG viability. The encapsulation of LGG in MPDS led to an increase in the viability of LGG in simulated gastric fluid. In addition, the LGG viability was enhanced with an increase in reaction temperature and holding time. In conclusions, the encapsulation of LGG in MPDS could be an effective way of improving the viability of LGG during pasturization process in various foods.

Development of Hydrophobically Modified Casein Derivative-Based Delivery System for Docosahexaenoic Acids by an Acid-Induced Gelation

  • Ho-Kyung Ha;Dan-Bi Woo;Mee-Ryung Lee;Won-Jae Lee
    • Food Science of Animal Resources
    • /
    • v.43 no.2
    • /
    • pp.220-231
    • /
    • 2023
  • Although omega-3 fatty acids including docosahexaenoic acid (DHA) contain various health-promoting effects, their poor aqueous solubility and stability make them difficult to be induced in dairy foods. The aims of this research were to manufacture casein derivative-based delivery system using acid-induced gelation method with glucono-σ-lactone and to investigate the effects of production variables, such as pH and charged amount of linoleic acid, on the physicochemical properties of delivery systems and oxidative stability of DHA during storage in model milk. Covalent modification with linoleic acid resulted in the production of casein derivatives with varying degrees of modification. As pH was reduced from 5.0 to 4.8 and the charged amount of linoleic acid was increased from 0% to 30%, an increase in particle size of casein derivative-based delivery systems was observed. The encapsulation efficiency of DHA was increased with decreased pH and increased charged amount of linoleic acid. The use of delivery system for DHA resulted in a decrease in the development of primary and secondary oxidation products. An increase in the degree of modification of casein derivatives with linoleic acid resulted in a decrease in the formation of primary and secondary oxidation products than of free DHA indicating that delivery systems could enhance the oxidative stability of DHA during storage in model milk. In conclusions, casein derivatives can be an effective delivery system for DHA and charged amount of linoleic acid played a key role determining the physicochemical characteristics of delivery system and oxidative stability of DHA.

Optimization of Fermentation Condition for Red Ginseng Wine Using Response Surface Methodology. (반응표면분석을 이용한 홍삼주 발효조건 최적화)

  • Kim, Seong-Ho;Kang, Bok-Hee;Noh, Sang-Gyun;Kim, Jong-Guk;Lee, Sang-Han;Lee, Jin-Man
    • Journal of Life Science
    • /
    • v.18 no.4
    • /
    • pp.556-564
    • /
    • 2008
  • Response surface methodology was used to monitor the optimization of fermentation conditions for red ginseng wine. A central composite design was applied to investigate the effects of independent variables, fermentation temperature ($X_1$), fermentation time ($X_2$) and initial pH ($X_3$) on dependent variables, physicochemical characteristics and effective ingredients. Alcohol and total sugar content were significantly affected both by fermentation temperature and time. Crude saponin content was greatly affected by fermentation time, and pH was significantly affected by initial pH. Fermentation time and initial pH had a greater effect on ginsenoside content than fermentation temperature. Ginsenoside content increased along with fermentation time and initial pH. We elicited a regression formula for each variable, and superimposed the total optimum points of fermentation conditions for physicochemical characteristics and the effective constituents. The predicted values at the optimum fermentation conditions were at $21{\sim}27^{\circ}C$ for $15{\sim}20$ day in initial pH $4.6{\sim}5.2$.

Development and Characterization of a Hydrolyzed Goat Milk Protein/Chitosan Oligosaccharide Nano-Delivery System (산양유 단백질 분해물/키토올리고당 나노 전달체 제조 및 물리화학적 특성연구)

  • Ha, Ho-Kyung;Kim, Jin Wook;Han, Kyoung-Sik;Yun, Sung Seob;Lee, Mee-Ryung;Lee, Won-Jae
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.208-214
    • /
    • 2017
  • The aims of this study were to manufacture a hydrolyzed goat milk protein (HGMP)/chitosan ologisaccharide (CSO) nano-delivery system (NDS) and to investigate the effects of production variables, such as sodium tripolyphosphate (TPP), HGMP, and CSO concentration levels, on the formation and physicochemical properties of the NDS. An HGMP/CSO NDS was produced using the ionic gelation method at pH 5.5. Transmission electron microscopy and a particle size analyzer were used to determine the morphological and physicochemical properties of NDSs, respectively. The size of the HGMP/CSO NDS decreased from 225 to 138 nm as HGMP and CSO concentration levels decreased. The NDS had a positive surface charge, with a zeta-potential value of +23 mV. The encapsulation efficiency (EE) of docosahexaenoic acid was enhanced as the HGMP concentration level increased. Additionally, increasing the concentration level of CSO resulted in an increase in the EE of resveratrol. The HGMP/CSO NDS exhibited good physical stability during freeze-drying. Thus, our findings showed that the HGMP/CSO NDS was successfully manufactured and that HGMP and CSO concentration levels were key factors affecting the physicochemical properties of the NDS.

Role of Catheter's Position for Final Results in Intrathecal Drug Delivery. Analysis Based on CSF Dynamics and Specific Drugs Profiles

  • De Andres, Jose;Perotti, Luciano;Villanueva, Vicente;Asensio Samper, Juan Marcos;Fabregat-Cid, Gustavo
    • The Korean Journal of Pain
    • /
    • v.26 no.4
    • /
    • pp.336-346
    • /
    • 2013
  • Intrathecal drug delivery is an effective and safe option for the treatment of chronic pathology refractory to conventional pain therapies. Typical intrathecal administered drugs are opioids, baclofen, local anesthetics and adjuvant medications. Although knowledge about mechanisms of action of intrathecal drugs are every day more clear many doubt remain respect the correct location of intrathecal catheter in order to achieve the best therapeutic result. We analyze the factors that can affect drug distribution within the cerebrospinal fluid. Three categories of variables were identified: drug features, cerebrospinal fluid (CSF) dynamics and patients features. First category includes physicochemical properties and pharmacological features of intrathecal administered drugs with special attention to drug lipophilicity. In the second category, the variables in CSF flow, are considered that can modify the drug distribution within the CSF with special attention to the new theories of liquoral circulation. Last category try to explain inter-individual difference in baclofen response with difference that are specific for each patients such as the anatomical area to treat, patient posture or reaction to inflammatory stimulus. We conclude that a comprehensive evaluation of the patients, including imaging techniques to study the anatomy and physiology of intrathecal environment and CSF dynamics, could become essential in the future to the purpose of optimize the clinical outcome of intrathecal therapy.

Preparation of Active Cu/ZnO-based Catalysts for Methanol Synthesis (메탄올 생산용 고활성 Cu/ZnO 촉매 합성방법)

  • Jeong, Cheonwoo;Suh, Young-Woong
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.555-564
    • /
    • 2016
  • In recent years, methanol has attracted much attention since it can be cleanly manufactured by the combined use of atmospheric $CO_2$ recycling and water splitting via renewable energy. For the concept of "methanol economy", an active methanol synthesis catalyst should be prepared in a sophisticated manner rather than by empirical optimization approach. Even though Cu/ZnO-based catalysts prepared by coprecipitation are well known and have been extensively investigated even for a century, fundamental understanding on the precipitation chemistry and catalyst nanostructure has recently been achieved due to complexity of the necessary preparation steps such as precipitation, ageing, filtering, washing, drying, calcination and reduction. Herein we review the recent reports regarding the effects of various synthesis variables in each step on the physicochemical properties of materials in precursor, calcined and reduced states. The relationship between these characteristics and the catalytic performance will also be discussed because many variables in each step strongly influence the final catalytic activity, called "chemical memory". All discussion focuses on how to prepare a highly active Cu/ZnO-based catalyst for methanol synthesis. Furthermore, the preparation strategy we deliver here would be utilized for designing other coprecipitation-derived supported metal or metal oxide catalysts.