• 제목/요약/키워드: physical sound parameters

Search Result 59, Processing Time 0.024 seconds

Hydroacoustic Records and Numerical Models of the Source Mechanisms from the First Historical Eruption of Anatahan Volcano, Mariana Islands

  • Park M.;Dziak R.P.;Matsumoto H.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.232-237
    • /
    • 2004
  • Anatahan Volcano in the Commonwealth of the Northern Mariana Islands (CNMI) erupted for the first time in recorded history on 10 May 2003. The underwater acoustic records of earthquakes, explosions, and tremor produced during the eruption were recorded on a sound-channel hydrophone deployed in February 2003. Acoustic propagation models show the seismic to acoustic conversion at Anatahan is particularly efficient, aided by the slope of the seamount toward the hydrophone. The hydrophone records confirm the onset of earthquake activity at 01:53Z on 10 May, as well as the onset (at ${\~}$06:20Z) of continuous, low-frequency (5-40 Hz) acoustic energy that is likely volcanic tremor related to magma intrusion. The hydrophone recorded a total of 458 earthquakes associated with the eruption. To predict the character of acoustic signals generated from Anatahan, we developed a moment-tensor representation of a volcano-seismic source that is governed by the geometry of the source and the physical properties of the magma. A buried magmatic pipe model was adopted, and numerically modeling source parameters such as the pipe radius and magma viscosity enable us to grasp the inward nature of Anatahan Volcano.

  • PDF

Simulation and Three-dimensional Animation of Skipjack Behavior as Capture Process during Purse Seining

  • Kim, Yong-Hae;Park, Myeong-Chul;Ha, Suk-Wun
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.2
    • /
    • pp.113-123
    • /
    • 2008
  • We modeled fish school movements as a capture process in relation to the purse seine method using the three steps of the stimulus-response process (i.e., input stimuli, central decision-making and output reaction). Input stimuli of the model were categorized as either physical stimuli such as visual stimulus, sound stimulus, water flow, and weather or as biological stimuli such as species and size, swimming performance, sensual sensitivity, and presence of prey or predators. The output process determining the spatial orientation of the fish school for 3-D movements was based on swimming speed and angular change in the fish response, and these movements were animated as the relative geometry between the fish school and the purse seine. Simulations were carried out for skipjack tuna (Katsuwonus pelamis) schools reacting to a pelagic purse seine in the southwest Pacific Ocean. Simulation results showed that escape ratios varied from 20 to 70% by the relevant ranges in the stimulus-response thresholds, swimming speeds, and angular changes of fish schools were similar to those observed in the field. Therefore, with knowledge of relevant parameters, this model can be used to predict capture and escape probabilities of purse seine operations for different fish species or conditions.

Influence of Microstructure on Reference Target on Ultrasonic Backscattering (기준표적상의 미세구조가 초음파 후방산란에 미치는 영향)

  • Kim, Ho-Chul;Kim, Yong-Tae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.1E
    • /
    • pp.38-44
    • /
    • 2010
  • This paper is based on our comments and proposed amendments to the documents, Annex A, Phantom for determining Maximum Depth of Penetration, and Annex B, Local Dynamic Range Using Acoustical Test Objects 87/400/CDV. IEC 61391-2 Ed. 1.0 200X, prepared by IEC technical Committee 87; Ultrasonics. The documents are concerned with the influence of microstructure of reference target material on the ultrasonic backscattering. Previous works on the attenuation due to backreflection and backscattering of reference target materials are reviewed. The drawback to the use of ungraded stainless steel and metallic materials without microstructural data such as, crystal structure, basic acoustic data of sound velocity and attenuation, grain size, roughness and elastic constants has been discussed. The analysis suggested that the insightful conclusion can be made by differentiating the influence arising from target size and microstructure on the backscattering measurements. The microstructural parameters are associated with physical, geometrical, acoustical and mechanical origins of variation with frequency. Further clarification of such a diverse source mechanisms for ultrasonic backscattering would make the target material and its application for medical diagnosis and therapy simpler and more reliable.

Perceptual Evaluation of Noise Sources in a Chamber for Residential and Working Environment (주거 및 사무환경 챔버에서의 생활소음에 대한 감성적 평가)

  • Jeon, Jin-Yong;Kim, Kyong-Ho;Jung, Jeong-Ho;Ryu, Jong-Kwan;Cho, Moon-Jae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.6
    • /
    • pp.437-444
    • /
    • 2002
  • This paper is to provide the basic way of a acoustical evaluation and efficient control noise by investigating the limits of perceptual loudness of living environment and by finding out any correlation between Physical characteristics of noise and psychoacoustic parameters. The limits of perceptual loudness were selected by the subjects in a chamber for residential and working environment. And the noise sources were analyzed to find out whether there is any correlation with Zwicker parameters and ACF factors. In this study especially, to set up the domestic evaluation grade about floor impact noise. we'd like to suggest the loudness Perception research result as fundamental resource for setting up the evaluation grade through the result that is based on annoyance. In the result of this research, upper limit of heavy-weight impact noise was L-60, and lower limit of it was L-50. On the other hand, upper limit of light-weight impact noise was L-70, and lower limit of it was L-55. It seemed that the loudness of noise from vacuum cleaner noise does not affect its perceived noisiness. Noises implicated In human such as floor walking noise and talking sound, are the most irritating noise in office environment.

Physics-based modelling and validation of inter-granular helium behaviour in SCIANTIX

  • Giorgi, R.;Cechet, A.;Cognini, L.;Magni, A.;Pizzocri, D.;Zullo, G.;Schubert, A.;Van Uffelen, P.;Luzzi, L.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2367-2375
    • /
    • 2022
  • In this work, we propose a new mechanistic model for the treatment of helium behaviour at the grain boundaries in oxide nuclear fuel. The model provides a rate-theory description of helium inter-granular behaviour, considering diffusion towards grain edges, trapping in lenticular bubbles, and thermal resolution. It is paired with a rate-theory description of helium intra-granular behaviour that includes diffusion towards grain boundaries, trapping in spherical bubbles, and thermal re-solution. The proposed model has been implemented in the meso-scale software designed for coupling with fuel performance codes SCIANTIX. It is validated against thermal desorption experiments performed on doped UO2 samples annealed at different temperatures. The overall agreement of the new model with the experimental data is improved, both in terms of integral helium release and of the helium release rate. By considering the contribution of helium at the grain boundaries in the new model, it is possible to represent the kinetics of helium release rate at high temperature. Given the uncertainties involved in the initial conditions for the inter-granular part of the model and the uncertainties associated to some model parameters for which limited lower-length scale information is available, such as the helium diffusivity at the grain boundaries, the results are complemented by a dedicated uncertainty analysis. This assessment demonstrates that the initial conditions, chosen in a reasonable range, have limited impact on the results, and confirms that it is possible to achieve satisfying results using sound values for the uncertain physical parameters.

Numerical studies of information about elastic parameter sets in non-linear elastic wavefield inversion schemes (비선형 탄성파 파동장 역산 방법에서 탄성파 변수 세트에 관한 정보의 수치적 연구)

  • Sakai, Akio
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.1-18
    • /
    • 2007
  • Non-linear elastic wavefield inversion is a powerful method for estimating elastic parameters for physical constraints that determine subsurface rock and properties. Here, I introduce six elastic-wave velocity models by reconstructing elastic-wave velocity variations from real data and a 2D elastic-wave velocity model. Reflection seismic data information is often decoupled into short and long wavelength components. The local search method has difficulty in estimating the longer wavelength velocity if the starting model is far from the true model, and source frequencies are then changed from lower to higher bands (as in the 'frequency-cascade scheme') to estimate model elastic parameters. Elastic parameters are inverted at each inversion step ('simultaneous mode') with a starting model of linear P- and S-wave velocity trends with depth. Elastic parameters are also derived by inversion in three other modes - using a P- and S-wave velocity basis $('V_P\;V_S\;mode')$; P-impedance and Poisson's ratio basis $('I_P\;Poisson\;mode')$; and P- and S-impedance $('I_P\;I_S\;mode')$. Density values are updated at each elastic inversion step under three assumptions in each mode. By evaluating the accuracy of the inversion for each parameter set for elastic models, it can be concluded that there is no specific difference between the inversion results for the $V_P\;V_S$ mode and the $I_P$ Poisson mode. The same conclusion is expected for the $I_P\;I_S$ mode, too. This gives us a sound basis for full wavelength elastic wavefield inversion.

Implementation of Non-Stringed Guitar Based on Physical Modeling Synthesis (물리적 모델링 합성법에 기반을 둔 줄 없는 기타 구현)

  • Kang, Myeong-Su;Cho, Sang-Jin;Chong, Ui-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.119-126
    • /
    • 2009
  • This paper describes the non-stringed guitar composed of laser strings, frets, sound synthesis algorithm and a processor. The laser strings that can depict stroke and playing arpeggios comprise laser modules and photo diodes. Frets are implemented by voltage divider. The guitar body does not need to implement physically because commuted waveguide synthesis is used. The proposed frets enable; players to represent all of chords by the chord glove as well as guitar solo. Sliding, hammering-on and pulling-off sounds are synthesized by using parameters from the voltage divider. Because the pitch shifting corresponds to the time-varying propagation speed in the digital waveguide model, the proposed model can synthesize vibrato as well. After transformation of signals from the laser strings and frets into parameters for synthesis algorithm, the digital signal processor, TMS320F2812, performs the real-time synthesis algorithm and communicates with the DAC. The demonstration movieclip available via the Internet shows one to play a song, 'Arirang', synthesized by proposed algorithm and interfaces in real-time. Consequently, we can conclude that the proposed synthesis algorithm is efficient in guitar solo and there is no problem to play the non-stringed guitar in real-time.

ERotating Bondi Accretion Flow with and without outflow

  • Han, Du-Hwan;Park, Myeong-Gu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.52.4-53
    • /
    • 2020
  • It is less well known that the properties, especially the mass accretion rate, of accretion flow are affected by the angular momentum of accreting gas. Park (2009) found that the mass accretion rate \dot{m}, mass accretion rate in units of Bondi accretion rate, is inversely proportional to the angular momentum of gas λ, at the Bondi radius where gas sound speed is equal to the free-fall velocity and proportional to the viscosity parameter α, and also Narayan & Fabian (2011) found a similar relation, but the dependence of the mass accretion rate of the gas angular momentum is much weaker. In this work, we investigate the global solutions for the rotating Bondi flow, i.e., polytropic flow accreting via viscosity, for various accretion parameters and the dependence of the mass accretion rate on the physical characteristics of gas. We set the outer boundary at various radius r_{out}=10^3~10^5 r_{Sch}, where r_{Sch} is the Schwarzschild radius of the black hole. For a small Bondi radius, the mass accretion rate changes steeply, as the angular momentum changes, and for a large Bondi radius, the mass accretion rate changes gradually. When the accreting gas has a near or super Keplerian rotation, we confirm that the relation between the mass accretion rate and angular momentum is roughly independent of Bondi radius as shown in Park (2009). We find that \dot{m} is determined by the gas angular momentum at the Bondi radius in units of r_{Sch}c. We also investigate the solution for the rotating Bondi flow with the outflow. The outflow affects the determination of the mass accretion rate at the outer boundary. We find that the relation between the mass accretion and the gas angular momentum becomes shallower as the outflow strengthens.

  • PDF

Simulation platform for living environment to ensure quality life (쾌적한 생활 설계를 위한 주거 및 사무실 시뮬레이터개발)

  • Park, Se-Jin;Kim, Chul-Jung;Kim, Si-Kyung;Mazumder, Mohammad Mynuddin Gani
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.853-860
    • /
    • 2007
  • In this modern era, human beings lead their life in complex environment where there are lots of parameters such as temperature, light, smell, sound, visual stimulus etc. that play important role for quality life. These parameters affect physical and mental behavior of a human being immensely. To ensure quality life the demand for quality products is always associated with human emotion and sensibility. Due to human sensibility and emotion involvement with quality life, the design stages of any kind of product must include some certain features related with emotion and sensibility. The cues for optimizing artificial environment are the physiological responses of human in that environment. The conventional approach of environmental physiology is to measure the relationship between environmental physical parameters and human psychological parameters under artificial conditions. Using that approach we tried to design an artificial environment for our daily lives and activities associated with both physiological and psychological behavior. We developed the technique to present the mock environment and software to measure and evaluate sensibility physiologically or psychologically and a simulator to measure and evaluate sensibility that can be utilized for large scale industrial production and design of environment. Simulator to measure and analyze human sensibility (SMAS) was constructed, which was utilized to estimate human sensibility and to simulate living and office environment.

  • PDF