Browse > Article
http://dx.doi.org/10.1016/j.net.2022.01.012

Physics-based modelling and validation of inter-granular helium behaviour in SCIANTIX  

Giorgi, R. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division)
Cechet, A. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division)
Cognini, L. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division)
Magni, A. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division)
Pizzocri, D. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division)
Zullo, G. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division)
Schubert, A. (European Commission, Joint Research Centre (JRC))
Van Uffelen, P. (European Commission, Joint Research Centre (JRC))
Luzzi, L. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division)
Publication Information
Nuclear Engineering and Technology / v.54, no.7, 2022 , pp. 2367-2375 More about this Journal
Abstract
In this work, we propose a new mechanistic model for the treatment of helium behaviour at the grain boundaries in oxide nuclear fuel. The model provides a rate-theory description of helium inter-granular behaviour, considering diffusion towards grain edges, trapping in lenticular bubbles, and thermal resolution. It is paired with a rate-theory description of helium intra-granular behaviour that includes diffusion towards grain boundaries, trapping in spherical bubbles, and thermal re-solution. The proposed model has been implemented in the meso-scale software designed for coupling with fuel performance codes SCIANTIX. It is validated against thermal desorption experiments performed on doped UO2 samples annealed at different temperatures. The overall agreement of the new model with the experimental data is improved, both in terms of integral helium release and of the helium release rate. By considering the contribution of helium at the grain boundaries in the new model, it is possible to represent the kinetics of helium release rate at high temperature. Given the uncertainties involved in the initial conditions for the inter-granular part of the model and the uncertainties associated to some model parameters for which limited lower-length scale information is available, such as the helium diffusivity at the grain boundaries, the results are complemented by a dedicated uncertainty analysis. This assessment demonstrates that the initial conditions, chosen in a reasonable range, have limited impact on the results, and confirms that it is possible to achieve satisfying results using sound values for the uncertain physical parameters.
Keywords
Helium behaviour; Oxide nuclear fuel; Meso-scale modelling; Fuel performance codes; SCIANTIX;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 M.G. El-Samrah, A.F. Tawfic, S.E. Chidiac, Spent nuclear fuel interim dry storage; Design requirements, most common methods, and evolution: a review, Ann. Nucl. Energy 160 (2021) 108408.   DOI
2 J.S. Kim, J.D. Hong, Y.S. Yang, D.H. Kook, Rod internal pressure of spent nuclear fuel and its effects on cladding degradation during dry storage, J. Nucl. Mater. 492 (2017) 253-259.   DOI
3 H.J. Cha, K.N. Jang, K.T. Kim, An allowable cladding peak temperature for spent nuclear fuels in interim dry storage, J. Nucl. Mater. 498 (2018) 409-420.   DOI
4 L. Cognini, A. Cechet, T. Barani, D. Pizzocri, P. Van Uffelen, L. Luzzi, Towards a physics-based description of intra-granular helium behaviour in oxide fuel for application in fuel performance codes, Nucl. Eng. Technol. 53 (2021) 562-571.   DOI
5 H.J. Matzke, Gas release mechanisms in UO2 - a critical review, Radiat. Eff. 53 (3-4) (1980) 219-242.   DOI
6 M.S. Veshchunov, On the theory of fission gas bubble evolution in irradiated UO2 fuel, J. Nucl. Mater. 277 (2000) 67-81.   DOI
7 D.R. Olander, D. Wongsawaeng, Re-solution of fission gas e a review: Part I. Intragranular bubbles, J. Nucl. Mater. 354 (1-3) (2006) 94-109.   DOI
8 K. Lassmann, TRANSURANUS: a fuel rod analysis code ready for use, J. Nucl. Mater. 188 (C) (1992) 295-302.   DOI
9 S. Alyokhina, Thermal analysis of certain accident conditions of dry spent nuclear fuel storage, Nucl. Eng. Technol. 50 (5) (2018) 717-723.   DOI
10 P.A.C. Raynaud, R.E. Einziger, Cladding stress during extended storage of high burnup spent nuclear fuel, J. Nucl. Mater. 464 (2015) 304-312.   DOI
11 P. Van Uffelen, Modelling the variable precipitation of fission products at grain boundaries, J. Nucl. Mater. 280 (3) (2000) 275-284.   DOI
12 E. Maugeri, et al., Helium solubility and behaviour in uranium dioxide, J. Nucl. Mater. 385 (2) (2009) 461-466.   DOI
13 J.Y. Colle, et al., A mass spectrometry method for quantitative and kinetic analysis of gas release from nuclear materials and its application to helium desorption from UO2 and fission gas release from irradiated fuel, J. Nucl. Sci. Technol. 51 (5) (2014) 700-711.   DOI
14 G. Martin, et al., A quantitative mNRA study of helium intergranular and volume diffusion in sintered UO2, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 249 (1-2 SPEC. ISS.) (2006) 509-512.   DOI
15 R.J. White, The development of grain-face porosity in irradiated oxide fuel, J. Nucl. Mater. 325 (1) (2004) 61-77.   DOI
16 K. Nakajima, H. Serizawa, N. Shirasu, Y. Haga, Y. Arai, The solubility and diffusion coefficient of helium in uranium dioxide, J. Nucl. Mater. 419 (1-3) (2011) 272-280.   DOI
17 R.M. Davies, S.G. Taylor, The mechanics of large bubbles rising through extended liquids and through liquids in tubes, Dyn. Curved Front. 200 (1062) (1988) 377-392.
18 T. Wiss, et al., Evolution of spent nuclear fuel in dry storage conditions for millennia and beyond, J. Nucl. Mater. 451 (1-3) (2014) 198-206.   DOI
19 F. Rufeh, D.R. Olander, T.H. Pigford, The solubility of helium in uranium dioxide, Nucl. Sci. Eng. 23 (4) (1965) 335-338.   DOI
20 D.R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, 1976.
21 Z. Talip, et al., Thermal diffusion of helium in 238Pu-doped UO2, J. Nucl. Mater. 445 (1-3) (2014) 117-127.   DOI
22 L. Van Brutzel, A. Chartier, A new equation of state for helium nanobubbles embedded in UO2 matrix calculated via molecular dynamics simulations, J. Nucl. Mater. 518 (2019) 431-439.   DOI
23 L.E. Herranz, J. Penalva, F. Feria, CFD analysis of a cask for spent fuel dry storage: the thermal evolution, Ann. Nucl. Energy 76 (2015) 54-62.   DOI
24 G. Martin, et al., Helium release in uranium dioxide in relation to grain boundaries and free surfaces, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 268 (11-12) (2010) 2133-2137.   DOI
25 J.D. Hales, R.L. Williamson, S.R. Novascone, G. Pastore, B.W. Spencer, D.S. Stafford, K.A. Gamble, D.M. Perez, W. Liu, BISON Theory Manual - the Equations behind Nuclear Fuel Analysis, Idaho Falls, 2016.
26 P. Konarski, C. Cozzo, G. Khvostov, H. Ferroukhi, Spent nuclear fuel in dry storage conditions e current trends in fuel performance modeling, J. Nucl. Mater. 555 (2021) 153138.   DOI
27 L. Cognini, et al., Helium solubility in oxide nuclear fuel: derivation of new correlations for Henry's constant, Nucl. Eng. Des. 340 (2018) 240-244.   DOI
28 L. Luzzi, et al., Helium diffusivity in oxide nuclear fuel: critical data analysis and new correlations, Nucl. Eng. Des. 330 (2018).
29 G. Spykman, Dry storage of spent nuclear fuel and high active waste in Germany - current situation and technical aspects on inventories integrity for a prolonged storage time, Nucl. Eng. Technol. 50 (2) (2018) 313-317.   DOI
30 A. Arkoma, R. Huhtanen, J. Lepp anen, J. Peltola, T. Pattikangas, Calculation chain for the analysis of spent nuclear fuel in long-term interim dry storage, Ann. Nucl. Energy 119 (2018) 129-138.   DOI
31 D. Pizzocri, et al., A model describing intra-granular fission gas behaviour in oxide fuel for advanced engineering tools, J. Nucl. Mater. 502 (2018) 323-330.   DOI
32 D. Pizzocri, F. Cappia, L. Luzzi, G. Pastore, V.V. Rondinella, P. Van Uffelen, A semi-empirical model for the formation and depletion of the high burnup structure in UO2, J. Nucl. Mater. 487 (2017) 23-29.   DOI
33 P. Van Uffelen, C. Gyori, A. Schubert, J. van de Laar, Z. Hozer, G. Spykman, Extending the application range of a fuel performance code from normal operating to design basis accident conditions, J. Nucl. Mater. 383 (1-2) (2008) 137-143.   DOI
34 F. Feria, L.E. Herranz, J. Penalva, On the way to enabling FRAPCON-3 to model spent fuel under dry storage conditions: the thermal evolution, Ann. Nucl. Energy 85 (2015) 995-1002.   DOI
35 D. Pizzocri, T. Barani, L. Luzzi, SCIANTIX: a new open source multi-scale code for fission gas behaviour modelling designed for nuclear fuel performance codes, J. Nucl. Mater. 532 (2020) 152042.   DOI
36 P. Van Uffelen, Contribution to the Modelling of Fission Gas Release in Light Water Reactor Fuel, 2002. PhD Thesis.
37 G. Pastore, et al., Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling, J. Nucl. Mater. 456 (2015) 398-408.   DOI
38 G. Pastore, L. Luzzi, V. Di Marcello, P. Van Uffelen, Physics-based modelling of fission gas swelling and release in UO2 applied to integral fuel rod analysis, Nucl. Eng. Des. 256 (2013) 75-86.   DOI
39 T. Barani, et al., Analysis of transient fission gas behaviour in oxide fuel using BISON and TRANSURANUS, J. Nucl. Mater. 486 (2017) 96-110.   DOI
40 T. Wiss, et al., Properties of the high burnup structure in nuclear light water reactor fuel, Radiochim. Acta 105 (11) (2017) 893-906.   DOI
41 B. Baurens, J. Sercombe, C. Riglet-Martial, L. Desgranges, L. Trotignon, P. Maugis, 3D thermo-chemical-mechanical simulation of power ramps with ALCYONE fuel code, J. Nucl. Mater. 452 (1-3) (2014) 578-594.   DOI
42 J. Rest, M.W.D. Cooper, J. Spino, J.A. Turnbull, P. Van Uffelen, C.T. Walker, Fission gas release from UO2 nuclear fuel: a review, J. Nucl. Mater. 513 (2019) 310-345.   DOI
43 A.M. Booth, A Method of Calculating Fission Gas Diffusion from UO2 Fuel and its Application to the X-2-F Loop Test, 1957.
44 M. Tonks, et al., Unit mechanisms of fission gas release: current understanding and future needs, J. Nucl. Mater. 504 (2018) 300-317.   DOI
45 P. Garcia, et al., A study of helium mobility in polycrystalline uranium dioxide, J. Nucl. Mater. 430 (1-3) (2012) 156-165.   DOI
46 D.R. Olander, P. Van Uffelen, On the role of grain boundary diffusion in fission gas release, J. Nucl. Mater. 288 (2-3) (2001) 137-147.   DOI