• 제목/요약/키워드: physical layer security

검색결과 105건 처리시간 0.034초

Security-reliability Analysis for a Cognitive Multi-hop Protocol in Cluster Networks with Hardware Imperfections

  • Tin, Phu Tran;Nam, Pham Minh;Duy, Tran Trung;Voznak, Miroslav
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제6권3호
    • /
    • pp.200-209
    • /
    • 2017
  • In this paper, we investigate the tradeoff between security and reliability for a multi-hop protocol in cluster-based underlay cognitive radio networks. In the proposed protocol, a secondary source communicates with a secondary destination via the multi-hop relay method in the presence of a secondary eavesdropper. To enhance system performance under the joint impact of interference constraint required by multiple primary users and hardware impairments, the best relay node is selected at each hop to relay the source data to the destination. Moreover, the destination is equipped with multiple antennas and employs a selection combining (SC) technique to combine the received data. We derive closed-form expressions of the intercept probability (IP) for the eavesdropping links and the outage probability (OP) for the data links over a Rayleigh fading channel. Finally, the correction of our derivations is verified by Monte-Carlo simulations.

A Survey of Security Mechanisms with Direct Sequence Spread Spectrum Signals

  • Kang, Taeho;Li, Xiang;Yu, Chansu;Kim, Jong
    • Journal of Computing Science and Engineering
    • /
    • 제7권3호
    • /
    • pp.187-197
    • /
    • 2013
  • Security has long been a challenging problem in wireless networks, mainly due to its broadcast nature of communication. This opens up simple yet effective measures to thwart useful communications between legitimate radios. Spread spectrum technologies, such as direct sequence spread spectrum (DSSS), have been developed as effective countermeasures against, for example, jamming attacks. This paper surveys previous research on securing a DSSS channel even further, using physical layer attributes-keyless DSSS mechanisms, and watermarked DSSS (WDSSS) schemes. The former has been motivated by the fact that it is still an open question to establish and share the secret spread sequence between the transmitter and the receiver without being noticed by adversaries. The basic idea of the latter is to exploit the redundancy inherent in DSSS's spreading process to embed watermark information. It can be considered a counter measure (authentication) for an intelligent attacker who obtains the spread sequence to generate fake messages. This paper also presents and evaluates an adaptive DSSS scheme that takes both jam resistance and communication efficiency into account.

Characterization and Detection of Location Spoofing Attacks

  • Lee, Jeong-Heon;Buehrer, R. Michael
    • Journal of Communications and Networks
    • /
    • 제14권4호
    • /
    • pp.396-409
    • /
    • 2012
  • With the proliferation of diverse wireless devices, there is an increasing concern about the security of location information which can be spoofed or disrupted by adversaries. This paper investigates the characterization and detection of location spoofing attacks, specifically those which are attempting to falsify (degrade) the position estimate through signal strength based attacks. Since the physical-layer approach identifies and assesses the security risk of position information based solely on using received signal strength (RSS), it is applicable to nearly any practical wireless network. In this paper, we characterize the impact of signal strength and beamforming attacks on range estimates and the resulting position estimate. It is shown that such attacks can be characterized by a scaling factor that biases the individual range estimators either uniformly or selectively. We then identify the more severe types of attacks, and develop an attack detection approach which does not rely on a priori knowledge (either statistical or environmental). The resulting approach, which exploits the dissimilar behavior of two RSS-based estimators when under attack, is shown to be effective at detecting both types of attacks with the detection rate increasing with the severity of the induced location error.

Robust Secure Transmit Design with Artificial Noise in the Presence of Multiple Eavesdroppers

  • Liu, Xiaochen;Gao, Yuanyuan;Sha, Nan;Zang, Guozhen;Wang, Shijie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권6호
    • /
    • pp.2204-2224
    • /
    • 2021
  • This paper studies secure wireless transmission from a multi-antenna transmitter to a single-antenna intended receiver overheard by multiple eavesdroppers with considering the imperfect channel state information (CSI) of wiretap channel. To enhance security of communication link, the artificial noise (AN) is generated at transmitter. We first design the robust joint optimal beamforming of secret signal and AN to minimize transmit power with constraints of security quality of service (QoS), i.e., minimum allowable signal-to-interference-and-noise ratio (SINR) at receiver and maximum tolerable SINR at eavesdroppers. The formulated design problem is shown to be nonconvex and we transfer it into linear matrix inequalities (LMIs). The semidefinite relaxation (SDR) technique is used and the approximated method is proved to solve the original problem exactly. To verify the robustness and tightness of proposed beamforming, we also provide a method to calculate the worst-case SINR at eavesdroppers for a designed transmit scheme using semidefinite programming (SDP). Additionally, the secrecy rate maximization is explored for fixed total transmit power. To tackle the nonconvexity of original formulation, we develop an iterative approach employing sequential parametric convex approximation (SPCA). The simulation results illustrate that the proposed robust transmit schemes can effectively improve the transmit performance.

교량감시를 위한 무선 센서 네트워크 구조 및 보안 프로토콜 (A Wireless Sensor Network Architecture and Security Protocol for Monitoring the State of Bridge)

  • 임화정;전진순;이헌길
    • 한국컴퓨터산업학회논문지
    • /
    • 제6권3호
    • /
    • pp.465-476
    • /
    • 2005
  • 무선 센서 네트워크는 물리적인 제약을 가진 수많은 센서 노드들로 구성되어 있다. 각 센서 노드는 주변의 상태를 감지하고, 감지된 정보를 싱크(Sink)로 보내는 역할을 한다. <중략> 본 논문에서는 교량과 같은 인공구조물에 적합한 비 계층적 무선 센서 네트워크 구조를 제시하였다. 또한, 센서 노드들의 휴면(Sleep)과 활동(Awake) 상태를 이용한 효율적인 보안 라우팅 프로토콜과 센서 노드의 키와 위치 정보를 사전에 노드에 분배하는 사전 키 분배 방식 및 2계층 인증 기법을 제안하였다. 제안하는 방식은 대체 경로 수의 증가로 인한 데이터 전송률의 증가와 에너지 소모율의 감소 효과를 보였다.

  • PDF

Secrecy Spectrum and Secrecy Energy Efficiency in Massive MIMO Enabled HetNets

  • Zhong, Zhihao;Peng, Jianhua;Huang, Kaizhi;Xia, Lu;Qi, Xiaohui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권2호
    • /
    • pp.628-649
    • /
    • 2017
  • Security and resource-saving are both demands of the fifth generation (5G) wireless networks. In this paper, we study the secrecy spectrum efficiency (SSE) and secrecy energy efficiency (SEE) of a K-tier massive multiple-input multiple-output (MIMO) enabled heterogeneous cellular network (HetNet), in which artificial noise (AN) are employed for secrecy enhancement. Assuming (i) independent Poisson point process model for the locations of base stations (BSs) of each tier as well as that of eavesdroppers, (ii) zero-forcing precoding at the macrocell BSs (MBSs), and (iii) maximum average received power-based cell selection, the tractable lower bound expressions for SSE and SEE of massive MIMO enabled HetNets are derived. Then, the influences on secrecy oriented spectrum and energy efficiency performance caused by the power allocation for AN, transmit antenna number, number of users served by each MBS, and eavesdropper density are analyzed respectively. Moreover, the analysis accuracy is verified by Monte Carlo simulations.

상관관계를 갖는 MIMO 채널에서 하나의 피드백 비트를 이용한 OSTBC의 물리계층 보안 성능 평가 (Secrecy Performance Evaluation of OSTBC using One-Bit Feedback in Correlated MIMO Channels)

  • 이상준;이인호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.886-889
    • /
    • 2014
  • 본 논문에서는 통신 신호를 도청하는 도청자가 존재하는 환경인 와이어탭(wiretap) 채널을 가정하여 하나의 피드백 비트를 이용한 직교 시공간 블록 코드(orthogonal space-time block code, OSTBC)의 물리계층 보안 성능을 평가한다. 여기서, 공간적 상관관계를 갖는 MIMO(multiple-input multiple-output) 채널을 가정한다. 본 논문에서는 하나의 피드백 비트를 이용한 OSTBC(one-bit feedback based OSTBC, F-OSTBC) 기술을 제시하고, 각 노드에서의 공간 채널 상관계수를 다양하게 가정하여 F-OSTBC와 기존의 OSTBC, 그리고 송신 안테나 선택 기술에 대한 보안 아웃티지 성능을 비교한다.

  • PDF

Obesity Level Prediction Based on Data Mining Techniques

  • Alqahtani, Asma;Albuainin, Fatima;Alrayes, Rana;Al muhanna, Noura;Alyahyan, Eyman;Aldahasi, Ezaz
    • International Journal of Computer Science & Network Security
    • /
    • 제21권3호
    • /
    • pp.103-111
    • /
    • 2021
  • Obesity affects individuals of all gender and ages worldwide; consequently, several studies have performed great works to define factors causing it. This study develops an effective method to trace obesity levels based on supervised data mining techniques such as Random Forest and Multi-Layer Perception (MLP), so as to tackle this universal epidemic. Notably, the dataset was from countries like Mexico, Peru, and Colombia in the 14- 61year age group, with varying eating habits and physical conditions. The data includes 2111 instances and 17 attributes labelled using NObesity, which facilitates categorization of data using Overweight Levels l I and II, Insufficient Weight, Normal Weight, as well as Obesity Type I to III. This study found that the highest accuracy was achieved by Random Forest algorithm in comparison to the MLP algorithm, with an overall classification rate of 96.7%.

Performance Analysis of Energy-Efficient Secure Transmission for Wireless Powered Cooperative Networks with Imperfect CSI

  • Yajun Zhang;Jun Wu;Bing Wang;Hongkai Wang;Xiaohui Shang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권9호
    • /
    • pp.2399-2418
    • /
    • 2023
  • The paper focuses on investigating secure transmission in wireless powered communication networks (WPCN) that involve multiple energy-constrained relays and one energy-constrained source. The energy is harvested from a power beacon (PB) while operating in the presence of a passive eavesdropper. The study primarily aims to achieve energy-efficient secure communications by examining the impact of channel estimation on the secrecy performance of WPCN under both perfect and imperfect CSI scenarios. To obtain practical insights on improving security and energy efficiency, we propose closed-form expressions for secrecy outage probability (SOP) under the linear energy harvesting (LEH) model of WPCN. Furthermore, we suggest a search method to optimize the secure energy efficiency (SEE) with limited power from PB. The research emphasizes the significance of channel estimation in maintaining the desired performance levels in WPCN in real-world applications. The theoretical results are validated through simulations to ensure their accuracy and reliability.

Exploiting Correlation Characteristics to Detect Covert digital communication

  • Huang, Shuhua;Liu, Weiwei;Liu, Guangjie;Dai, Yuewei;Tian, Wen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권8호
    • /
    • pp.3550-3566
    • /
    • 2020
  • As a widely used way to exfiltrate information, wireless covert channel (WCC) brings a serious threat to communication security, which enables the wireless communication process to bypass the authorized access control mechanism to disclose information. Unlike the covert channel on the network layer, wireless covert channels on the physical layer (WCC-P) is a new covert communication mode to implement and improve covert wireless communication. Existing WCC-P scheme modulates the secret message bits into the Gaussian noise, which is also called covert digital communication system based on the joint normal distribution (CJND). Finding the existence of this type of covert channel remains a challenging work due to its high undetectability. In this paper, we exploit the square autocorrelation coefficient (SAC) characteristic of the CJND signal to distinguish the covert communication from legitimate communication. We study the sharp increase of the SAC value when the offset is equal to the symbol length, which is caused by embedding secret information. Then, the SAC value of the measured sample is compared with the threshold value to determine whether the measured sample is CJND sample. When the signal-to-noise ratio reaches 20db, the detection accuracy can reach more than 90%.