Obesity Level Prediction Based on Data Mining Techniques |
Alqahtani, Asma
(Computer Science Department, College of Science and Humanities, Imam Abdulrahman Bin Faisal University)
Albuainin, Fatima (Computer Science Department, College of Science and Humanities, Imam Abdulrahman Bin Faisal University) Alrayes, Rana (Computer Science Department, College of Science and Humanities, Imam Abdulrahman Bin Faisal University) Al muhanna, Noura (Computer Science Department, College of Science and Humanities, Imam Abdulrahman Bin Faisal University) Alyahyan, Eyman (Computer Science Department, College of Science and Humanities, Imam Abdulrahman Bin Faisal University) Aldahasi, Ezaz (Computer Science Department, College of Science and Humanities, Imam Abdulrahman Bin Faisal University) |
1 | Z. Zheng and K. Ruggiero, "Using machine learning to predict obesity in high school students," Proc. - 2017 IEEE Int. Conf. Bioinforma. Biomed. BIBM 2017, vol. 2017-Janua, pp. 2132-2138, 2017, doi: 10.1109/BIBM.2017.8217988. DOI |
2 | H. B. Hubert, M. Feinleib, P. M. McNamara, and W. P. Castelli, "Obesity as an independent risk factor for cardiovascular disease: A 26-year follow-up of participants in the Framingham Heart Study," Circulation, vol. 67, no. 5, pp. 968-977, 1983, doi: 10.1161/01.CIR.67.5.968. DOI |
3 | R. Kohavi, "Wrappers for performance enhancement and obvious decision graphs," no. September, 1995. |
4 | A. S. Nur, "Artificial Neural Network Weight Optimization: A Review," Telkomnika, 2014. |
5 | N. Daud, N. L. Mohd Noor, S. A. Aljunid, N. Noordin, and N. I. M. Fahmi Teng, "Predictive Analytics: The Application of J48 Algorithm on Grocery Data to Predict Obesity," 2018 IEEE Conf. Big Data Anal. ICBDA 2018, pp. 1-6, 2019, doi: 10.1109/ICBDAA.2018.8629623. DOI |
6 | J. Dunstan, M. Aguirre, M. Bastias, C. Nau, T. A. Glass, and F. Tobar, "Predicting nationwide obesity from food sales using machine learning," Health Informatics J., vol. 26, no. 1, pp. 652-663, 2020, doi: 10.1177/1460458219845959. DOI |
7 | F. M. Palechor and A. de la H. Manotas, "Dataset for estimation of obesity levels based on eating habits and physical condition in individuals from Colombia, Peru and Mexico," Data Br., vol. 25, p. 104344, 2019, doi: 10.1016/j.dib.2019.104344. DOI |
8 | Y. Qi, "Random forest for bioinformatics," Springer, 2012, pp. 307-323. |
9 | S. Riad, J. Mania, L. Bouchaou, and Y. Najjar, "Predicting catchment flow in a semi-arid region via an artificial neural network technique," Hydrol. Process., vol. 18, no. 13, pp. 2387-2393, 2004, doi: 10.1002/hyp.1469. DOI |
10 | and S. H. ] A. Hemmati-Sarapardeh, A. Larestani, M. Nait Amar, Chapter 2 - Intelligent models. 2020. |
11 | M. Khajehei and F. Etemady, "Data mining and medical research studies," Proc. - 2nd Int. Conf. Comput. Intell. Model. Simulation, CIMSim 2010, no. September 2010, pp. 119-122, 2010, doi: 10.1109/CIMSiM.2010.24. DOI |
12 | A. Bewick and E. P. Greener, "Ref 1.Pdf." p. 4623, 1969. |
13 | A. Must, J. Spadano, E. H. Coakley, A. E. Field, G. Colditz, and W. H. Dietz, "The disease burden associated with overweight and obesity," J. Am. Med. Assoc., vol. 282, no. 16, pp. 1523-1529, 1999, doi: 10.1001/jama.282.16.1523. DOI |
14 | B. Guy-Grand, "Beyond body mass index," Cah. Nutr. Diet., vol. 49, no. 3, pp. 93-94, 2014, doi: 10.1016/j.cnd.2014.05.002. DOI |
15 | E. Alyahyan and D. Dusteaor, "Decision trees for very early prediction of student's achievement," 2020 2nd Int. Conf. Comput. Inf. Sci. ICCIS 2020, 2020, doi: 10.1109/ICCIS49240.2020.9257646. DOI |
16 | N. Lavrac, "Selected techniques for data mining in medicine," Artif. Intell. Med., vol. 16, no. 1, pp. 3-23, 1999, doi: 10.1016/S0933-3657(98)00062-1. DOI |
17 | R. Hossain, S. M. H. Mahmud, M. A. Hossin, S. R. Haider Noori, and H. Jahan, "PRMT: Predicting Risk Factor of Obesity among Middle-Aged People Using Data Mining Techniques," Procedia Comput. Sci., vol. 132, pp. 1068-1076, 2018, doi: 10.1016/j.procs.2018.05.022. DOI |
18 | R. A. Flauzino, Artificial Neural Networks A Practical Course. Springer International Publishing, 2016. |
19 | M. Mursalin, Y. Zhang, Y. Chen, and N. V. Chawla, "Automated epileptic seizure detection using improved correlation-based feature selection with random forest classifier," Neurocomputing, vol. 241, no. February, pp. 204-214, 2017, doi: 10.1016/j.neucom.2017.02.053. DOI |
20 | R. C. Cervantes and U. M. Palacio, "Estimation of obesity levels based on computational intelligence," Informatics Med. Unlocked, vol. 21, no. November, 2020, doi: 10.1016/j.imu.2020.100472. DOI |
21 | C. M. Lai, W. C. Yeh, and C. Y. Chang, "Gene selection using information gain and improved simplified swarm optimization," Neurocomputing, vol. 218, no. November 2018, pp. 331-338, 2016, doi: 10.1016/j.neucom.2016.08.089. DOI |
22 | A. F. in A. N. L. Sarica, Alessia; Cerasa, Antonio; Quattrone, "Random Forest algorithm for the classification of neuroimaging data in Alzheimer's disease: A systematic review," 2017. |
23 | R. Sangeetha and S. Sathappan, "Preprocessing Using Attribute Selection in Data Stream Mining," Proc. 3rd Int. Conf. Commun. Electron. Syst. ICCES 2018, no. Icces, pp. 431-438, 2018, doi: 10.1109/CESYS.2018.8723918. DOI |
24 | E. De-La-Hoz-Correa, F. E. Mendoza-Palechor, A. DeLa-Hoz-Manotas, R. C. Morales-Ortega, and S. H. B. Adriana, "Obesity level estimation software based on decision trees," J. Comput. Sci., vol. 15, no. 1, pp. 67-77, 2019, doi: 10.3844/jcssp.2019.67.77. DOI |
25 | M. H. J. and P. Jian and Kamber, "Data Mining Techniques, Third Edition," p. 847, 2011. |
26 | B. Singh and H. Tawfik, "A Machine Learning Approach for Predicting Weight Gain Risks in Young Adults," Conf. Proc. 2019 10th Int. Conf. Dependable Syst. Serv. Technol. DESSERT 2019, pp. 231-234, 2019, doi: 10.1109/DESSERT.2019.8770016. DOI |
27 | M. K. Ucar, Z. Ucar, F. Koksal, and N. Daldal, "Estimation of body fat percentage using hybrid machine learning algorithms," Meas. J. Int. Meas. Confed., vol. 167, 2021, doi: 10.1016/j.measurement.2020.108173. DOI |
28 | P. M. Chakraborty Sounak, Khalilia Mohammed, "Predicting disease risks from highly imbalanced data using random forest," vol. 11, no. 1, p. 51, 2011. DOI |
29 | B. J. Saleh, A. Y. F. Saedi, A. T. Q. Al-aqbi, and L. A. Salman, "A Review Paper: Analysis of Weka Data Mining Techniques for Heart Disease Prediction System," Libr. Philos. Pract., vol. 7, no. 1, p. 1, 2020. |