• 제목/요약/키워드: physical and electrical properties

검색결과 940건 처리시간 0.034초

Correlation between the Annealing Effect and the Electrical Characteristics of the Depletion Region in ZnO, SnO2 and ZTO Films

  • Oh, Teresa
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권2호
    • /
    • pp.104-108
    • /
    • 2016
  • To research the correlation between oxygen vacancy and the electrical characteristics of ZTO, which is made by using a target mixed ZnO:SnO2=1:1, the ZnO, SnO2 and ZTO were analyzed by PL, XPS, XRD patterns and electrical properties. It was compared with the electron orbital spectra of O 1s in accordance with the electrical characteristics of ZnO, SnO2 and ZTO. The electrical characteristics of ZTO were improved by increasing the annealing temperatures, due to the high degree of crystal structures at a high temperature, and the physical properties of ZTO was similar to that of ZnO. The amorphous structure of SnO2 was increased with increasing the temperature. The Schottky contact of oxide semiconductors was formed using the depletion region, which is increased by the electron-hole combination due to the annealing processes. ZnO showed the Ohmic contact in spite of a high annealing temperature, but SnO2 and ZTO had Schottky contact. As such, it was confirmed that the electrical properties of ZTO are affected by the molecules of SnO2.

주사형 맥스웰응력 현미경에 의한 표면의 전기적 이미지 (Electrical Imaging of Thin Film Surface by Scanning Maxwell-stress Microscopy)

  • 신훈규;권영수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 D
    • /
    • pp.1508-1510
    • /
    • 1998
  • Recent development of scanning probe microscope techniques has made it possible to investigate, not only microscopic surface topography, but also physical and chemical properties on the nanometer-scale. The scanning Maxwell-stress microscopy (SMM) is surface characterization tool capable of mapping both the surface topography and electrical properties, such as surface potential, surface charge dielectric constant of thin films with a nanometer-scale resolution by means of the AC voltage driven oscillation of metal coated cantilever. In this study, we observed the surface potential distribution and molecular ordering in thin films. We have demonstrated that the SMM can be used for imaging surface potential distribution over the film surface and also be used for detecting surface changes in thin films. This is first step towards the understanding of electrical phenomena in organic and inorganic materials, biological system with SMM.

  • PDF

고체 산화물 연료전지를 위한 물성치 및 전기화학반응의 수치해석 모델링 (Numerical Modeling of Physical Property and Electrochemical Reaction for Solid Oxide Fuel Cells)

  • 박준근;김선영;배중면
    • 대한기계학회논문집B
    • /
    • 제34권2호
    • /
    • pp.157-163
    • /
    • 2010
  • 고체산화물연료전지는 세라믹 물질로 이루어지며, 세라믹 물질의 물성치는 작동조건에 따라 달라진다. 따라서, 높은 신뢰성을 가지는 시뮬레이션 모델을 개발하기 위해서는 세라믹 물질의 물성치를 정확하게 예측할 수 있어야한다. 본 논문에서는 고체산화물연료전지의 성능에 영향을 미치는 여러가지 물성치를 선택하고 그 물성치를 위한 시뮬레이션 모델이 개발되었다. 개회로전압을 위한 깁스에너지, 활성화손실을 위한 교환전류밀도, 저항손실을 위한 전기전도도가 계산되었다. 또한, 다공성 전극 내부의 물질전달 해석을 위해서 분자확산과 누센확산을 함께 고려하는 유효확산계수가 계산되었다. 이러한 계산과정 후에 물성치 모델과 전기화학반응 모델이 동시에 시뮬레이션 되었다. 해석코드의 검증을 위해서 전산해석 결과는 실험결과 및 Chan 등에 의해서 수행된 이전 연구결과와 비교되었다.

브렌드 저밀도 폴리에틸렌의 전기적 특성 및 브렌드 효과 (Electrical Properties and Blend Effect of Blended Low-Density Polyethylene)

  • 조돈찬;삼용웅;수곡조길;홍진웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 D
    • /
    • pp.1617-1620
    • /
    • 1999
  • In this work, the effect of blend on physical and electrical properties investigated. The two kinds of low-density polyethylene (LDPE) whose densities are evaluated at $0.9179[g/cm^3]$ and $0.9192[g/cm^3]$, respectively, were used and blended according to the different blend ratio. The LDPE with the blend ratio of 50[wt%] represented the lowest impulse breakdown strength, $F_{BImp}$ at $30[^{\circ}C]$, but the highest $F_{BImp}$ at $90[^{\circ}C]$. DC breakdown strength, $F_{BDC}$. decreased with the increase of blend ratio at $30[^{\circ}C$, but increased at $60[^{\circ}C]$. The current density decreased with a blend ratio up to 75 [wt%] at $90[^{\circ}C]$. By analyzing the diffraction patterns of XRD, we found that the LDPE with the blend ratio of 50 [wt%] represented the largest crystal size of (020) plane. We investigated the relationship between the effect of blend and electrical properties and these results are discussed.

  • PDF

Research on safety assessment and application effect of nanomedical products in physical education

  • Zhuli Li;Song Peng;Gang Chen
    • Advances in nano research
    • /
    • 제15권3호
    • /
    • pp.253-261
    • /
    • 2023
  • This study investigates the application of nano-composite materials in physical education, specifically focusing on improving the performance of sports hall flooring. The research centers on carbon nanotube reinforced polyvinyl chloride (PVC) composites, which offer enhanced mechanical properties and durability. The incorporation of carbon nanotubes as reinforcements in the PVC matrix provides notable benefits, including increased strength, improved thermal stability, electrical conductivity, and resistance to fatigue. The key parameters examined in this study are the weight percentage of carbon nanotubes and the temperature during the fabrication process. Through careful analysis, it is found that higher weight percentages of carbon nanotubes contribute to a more uniform dispersion within the PVC matrix, resulting in improved mechanical properties. Additionally, higher fabrication temperatures aid in repairing macroscopic defects, leading to enhanced overall performance. The findings of this study indicate that the utilization of carbon nanotube reinforced PVC composites can significantly enhance the strength and durability of sports hall flooring. By employing these advanced materials, the safety and suitability of physical education environments can be greatly improved. Furthermore, the insights gained from this research can contribute to the optimization of composite material design and fabrication techniques, not only in the field of physical education but also in various industries where composite materials find applications.

ZnO 첨가에 따른 PMW-PNN-PZT 세라믹스의 유전 및 압전 특성 (Dielectric and Piezoelectric Properties of PMW-PNN-PZT Ceramics As a Function of ZnO Addition)

  • 라철민;류주현
    • 한국전기전자재료학회논문지
    • /
    • 제28권3호
    • /
    • pp.165-169
    • /
    • 2015
  • In this paper, in order to develop the composition ceramics with the excellent dielectric properties, $Pb(Mg_{1/2}W_{1/2})_{0.03}(Ni_{1/3}Nb_{2/3})_{0.09}(Zr_{0.5}Ti_{0.5})_{0.88}O_3$ ceramics were fabricated by the conventional solid-state method. The effects of ZnO addition on their microstructure and piezoelectric properties were systematically investigated. The rhombohedral-tetragonal phase coexistence has been found in the ceramics without ZnO content and then with further increasing ZnO content, specimens exhibited tetragonal phase. The optimized ZnO content formed liquid phase and aided the grain growth of specimens. When 0.4 wt% ZnO was added, the optimal physical properties ($d_{33}=422pC/N$, $d_{31}=161pC/N$, ${\varepsilon}_r=1,905$, $k_p=0.55$, $Q_m=160$) were obtained.

Dielectric and Electro-Optical Properties of Ceramic Nanoparticles Doped Liquid Crystals

  • Porov, Preeti;Chandel, Vishal Singh;Manohar, Rajiv
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권2호
    • /
    • pp.69-78
    • /
    • 2016
  • Liquid crystals are important materials because of their applications in display technology and many other scientific applications. Different mixtures of liquid crystals and their doped samples have gained interest because a single liquid crystal compound cannot fulfill all the required parameters for the display application. The doping can be accomplished with dyes, polymers, or composite nanoparticles among other substance. The addition of nanoparticles can modify the physical properties of the host liquid crystal and enhances the performance of electro-optical devices. The present study is focused on investigations of possible changes in dielectric and electro optical properties of liquid crystals caused by doping with ceramic nanoparticles. Including smaller nanoparticles were found to be better candidates for use in suppressing the unwanted ion effects in liquid crystal displays.

용매에 따른 MWNT의 분산특성과 제조된 PU/MWNT 필름의 전기적·물리적 특성 분석 (Analysis of Electrical and Physical Property of the PU/MWNT Film and Dispersion Characteristics of MWNT According to the Solvent)

  • 김정현;마혜영;양성용;김승진
    • 한국염색가공학회지
    • /
    • 제24권1호
    • /
    • pp.69-78
    • /
    • 2012
  • This paper surveys the physical properties of the MWNT dispersion solution dispersed with the three types of solvents and of the polyurethane composite film for improvement of mechanical properties and electrical characteristics of PU/MWNT composite film. For this purpose, the MWNT dispersed solution was mixed with three types of solvent such as IPA, MEK and Toluene and then mixed with polyurethane (100part) with variation of loading content (0, 10, 20, 30, 40, 50 part) of MWNT dispersed solution in the ultrasonic wave dispersion apparatus. And eighteen PU/MWNT composite films were prepared as specimens. The various physical properties of these PU/MWNT films were measured and discussed with the loading content of three types of MWNT dispersed solutions. The highest absorbancy among the three types of dispersed solutions was shown in the IPA/MWNT solution. But the absorbancy of PU/MWNT films was not same as the solution. The low electrical surface and volume resistivity of PU/MWNT film were shown at the condition of 20 and 10 parts loading of IPA/MWNT dispersed solution, respectively. The low triboelectricity of PU/MWNT film was shown at the condition of above 30part loading of IPA/MWNT dispersed solution. The breaking strength and strain of PU/MWNT film prepared with IPA/MWNT dispersed solution were decreased with increasing loading content of IPA/MWNT from 10 to 40 parts. The maximum breaking strength and breaking strain according to the dispersion solution were shown on the IPA/MWNT dispersed solution. The uniform dispersion of PU/MWNT film according to the loading content of MWNT solution was shown by surface image analysis on the films dispersed with IPA.

BiFeO3 치환에 따른 PMW-PNN-PZT세라믹스의 강유전 및 압전 특성 (Ferroelectric and Piezoelectric Properties of PMW-PNN-PZT Ceramics as a Function of BiFeO3 Substitution)

  • 라철민;류주현
    • 한국전기전자재료학회논문지
    • /
    • 제28권9호
    • /
    • pp.577-580
    • /
    • 2015
  • In this paper, in order to develop the composition ceramics with the outstanding piezoelectric properties, $Pb(Mg_{1/2}W_{1/2})_{0.03}(Ni_{1/3}Nb_{2/3})_{0.09}(Zr_{0.5}Ti_{0.5})_{0.88}O_3$ ceramics substituted with $BiFeO_3$ were prepared by the conventional solid-state reaction method. The addition of small amount of $Li_2CO_3$ and $CaCO_3$ as sintering aids decreased the sintering temperature of the ceramics. The effects of $BiFeO_3$ substitution on their piezoelectric and dielectric properties were investigated. when 0.015 mol $BiFeO_3$ was substituted, the optimal physical properties of $d_{33}=590pC/N$, $E_c=8.78kV/mm$ were obtained.

SPECTROSCOPIC ADMITTIVITY IMAGING OF BIOLOGICAL TISSUES: CHALLENGES AND FUTURE DIRECTIONS

  • Zhang, Tingting;Bera, Tushar Kanti;Woo, Eung Je;Seo, Jin Keun
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제18권2호
    • /
    • pp.77-105
    • /
    • 2014
  • Medical imaging techniques have evolved to expand our ability to visualize new contrast information of electrical, optical, and mechanical properties of tissues in the human body using noninvasive measurement methods. In particular, electrical tissue property imaging techniques have received considerable attention for the last few decades since electrical properties of biological tissues and organs change with their physiological functions and pathological states. We can express the electrical tissue properties as the frequency-dependent admittivity, which can be measured in a macroscopic scale by assessing the relation between the time-harmonic electric field and current density. The main issue is to reconstruct spectroscopic admittivity images from 10 Hz to 1 MHz, for example, with reasonably high spatial and temporal resolutions. It requires a solution of a nonlinear inverse problem involving Maxwell's equations. To solve the inverse problem with practical significance, we need deep knowledge on its mathematical formulation of underlying physical phenomena, implementation of image reconstruction algorithms, and practical limitations associated with the measurement sensitivity, specificity, noise, and data acquisition time. This paper discusses a number of issues in electrical tissue property imaging modalities and their future directions.