• Title/Summary/Keyword: photovoltaic tracking system

Search Result 354, Processing Time 0.026 seconds

A Study on Modeling of Tracking-Type Floating Photovoltaic System based on Matlab/Simulink (매틀랩/시뮬링크 기반 추적식 수상태양광 발전시스템의 모델링에 관한 연구)

  • Kim, In-Soo;Oh, Sung-Chan;Kim, Yang-Mo;Choi, Young-Kwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.805-811
    • /
    • 2015
  • Floating photovoltaic systems have been developed by the construction process such as design, construction, operation and management. Therefore, the power of floating photovoltaic systems has been calculated by using simple formulas and the optimal tracking interval is set by operation experience. But, flow characteristics have a decisive effect on it unlike land based PV systems. In this paper, a tracking floating photovoltaic system is modeled by using Matlab/simulink. The modeling for the floating photovoltaic system is verified through applying the flow characteristics based on actual operating data of 100㎾ class tracking floating photovoltaic.

Development of Tracking Algorithm for Floating Photovoltaic System

  • So, Byung-Moon;Im, Ik-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.53-58
    • /
    • 2019
  • Since floating facility with mooring system can be moved and rotated by wind or other environmental variables, the error in azimuthal angle must be compensated using a GPS receiver and geo-magnetic sensor. Accordingly, when an existing photovoltaic tracking algorithm is applied to a floating photovoltaic system, it is difficult to do the optimal solar tracking. In this paper, an effective azimuthal angle algorithm is develop for the photovoltaic tracking in floating condition. In order to verify the developed algorithm, the prototype of the floating photovoltaic system is manufactured and the developed algorithm is applied to the system. The algorithm shows a good tracking feasibility on the prototype.

The Efficiency Analysis of Tracking-Type Floating PV System (추적식 수상 태양광 발전 시스템 성능 분석)

  • Yang, Yoen Won;Jeong, Seon Ok;Shin, Hyun Woo;Lee, Kil Song
    • Current Photovoltaic Research
    • /
    • v.1 no.2
    • /
    • pp.122-125
    • /
    • 2013
  • The Floating Photovoltaic System was installed on the surface of water. There were some researches in this subject. But there was not many studies with experiment on a high waterproof Floating Photovoltaic modules. The aim of this study was to analyze the performance of the Floating Photovoltaic System. For this experiment, a high waterproof Floating Photovoltaic modules were designed and applied to the module capacity of 10 kW Tracking-Type structure. The experiment results indicated the performance of the daily production is 51.6 kW; the production capacity of Floating Photovoltaic System is expected to be 23% higher than that of the ground-mounted photovoltaic system.

Characteristics of Photovoltaic Power Generation by Concentration and Tracking (집광추적형 PV발전의 특성에 관한 연구)

  • Kim, B.R.;Park, S.G.;Oh, H.G.;Yu, Y.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.39-40
    • /
    • 2005
  • Photovoltaic Power Generation system occupies an important position as an alternative energy source, converting directly sunlight into electricity,using a photovoltaic cell. The Purpose of this research is to present and confirm the effectiveness of concentration and tracking of sun in photovoltaic power generation. Comparative experiments were carried outwith two rating 75 watt solar modules in $25^{\circ}$ under condition of various times concentration, tracking and plain normal measuring generated voltages, currents and temperatures of back sheet of modules by internet monitoring system to find out which is best in economic sense. The experiments show that output power of concentration and tracking photovoltaic power generation is over 180% more then that of plain normal system.

  • PDF

Development of a Novel Tracking System for Photovoltaic Efficiency in Low Level Radiation

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.405-411
    • /
    • 2010
  • This paper proposes a novel tracking algorithm considering radiation to improve the power of a photovoltaic (PV) tracking system. The sensor method used in a conventional PV plant is unable to track the sun's exact position when the intensity of solar radiation is low. It also has the problem of malfunctions in the tracking system due to rapid changes in the climate. The program method generates power loss due to unnecessary operation of the tracking system because it is not adapted to various weather conditions. This tracking system does not increase the power above that of a power of tracking system fixed at a specific position due to these problems. To reduce the power loss, this paper proposes a novel control algorithm for a tracking system and proves the validity of the proposed control algorithm through a comparison with the conventional PV tracking method.

The Pivotless Tracking Type Floating Photovoltaic System and the Collected Data Analysis (무회전축 회전식 수상태양광 시스템 및 실증 데이터 분석)

  • Jee, Hongsub;Kim, Minwoo;Bae, Jaesung;Jeong, Jeongho;Lee, Jaehyeong
    • Current Photovoltaic Research
    • /
    • v.9 no.4
    • /
    • pp.133-136
    • /
    • 2021
  • In this study, the pivotless tracking type floating photovoltaic system was demonstrated successfully. The photovoltaic modules were installed on buoyant objects and the dynamic stability reinforcement mooring gear, tension control equipment and buoyant stabilizer were used to provide enough buoyance and stability and response to the external environment. After installation of the pivotless tracking type floating photovoltaic system, generated solar energy was collected and analyzed.

A Study on Constant Power Generation Algorithms for a Whole Range Power Point Tracking in Photovoltaic Systems (태양광 시스템의 전 범위 전력점 추종을 위한 CPG 알고리즘에 관한 연구)

  • Yang, Hyoung-Kyu;Bang, Taeho;Bae, Sunho;Park, Jung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.2
    • /
    • pp.111-119
    • /
    • 2019
  • In this study, constant power generation (CPG) algorithms are introduced for whole range power point tracking in photovoltaic systems. Currently, maximum power point tracking (MPPT) algorithm is widely used for high-power photovoltaic systems. However, MPPT algorithm cannot flexibly control such systems according to changing grid conditions. Maintaining grid stability has become important as the capacity of grid-connected photovoltaic systems is increased. CPG algorithms are required to generate the desired power depending on grid conditions. A grid-connected photovoltaic system is configured, and CPG algorithms are implemented. The performances of the implemented algorithms are compared and analyzed by experimental results.

Analysist of Instantaneous Current Tracking Control Inverter Characteristics for Photovoltaic System (태양광 발전용 순시치 전류제어형 인버터의 특성 해석)

  • 조금배;김한성
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.5
    • /
    • pp.770-778
    • /
    • 1994
  • In this paper, the photovoltaic inverter system with instantaneous sinusoidal current tracking control is proposed to improve the utilization factor of photovoltaic power system which would be connected utility interactive system. The proposed inverter is designed to track maximum power point by two-state value control method and utility interactive operation, and to decrease output harmonics component. Optimal operating region is described by state space averaging method, and present tracking condition of standard guide line. The experimental result shows the effectiveness of inverter system using the instantaneous control method.

Development of New Algorithm for Maximum Power Point Tracking of Photovoltaic system (Photovoltaic 시스템의 MPPT를 위한 새로운 알고리즘 개발)

  • Park, Ki-Tae;Ko, Jae-Sub;Choi, Jung-Sik;Park, Byung-Sang;Chung, Dong-Hwa
    • Journal of Korean Institute of Fire Investigation
    • /
    • v.10 no.1
    • /
    • pp.87-95
    • /
    • 2007
  • This paper is proposed a novel method to approximate the maximum power for a photovoltaic inverter system and tracking method. It is designed for power systems application and utilities. The proposed Maximum Power Point Tracking (MPPT) control has the advantage to provide a new simple way to approximate the optimal or rated voltage, the optimal or rated current and maximum power rating produced by a solar panel and the photovoltaic inverter. And this straightforward method will be named linear reoriented coordinates method (LRCM) with the advantage that Pmax and $V_{op}$ can be approximated using the same variable as the dynamic model without using complicate approximations or Taylor series. Furthermore tracking method is improved over 50% photovoltaic efficiency. This paper is proposed MPPT using LRMC and tracking method using weather condition of domestic moderate program technique. This paper is proposed the experimental results to verify the effectiveness of the new methods.

  • PDF

Implementation of a Stand-alone Photovoltaic Pumping System with Maximum Power Point Tracking

  • Zhengming Zhao;Kunlun Chen;Liqiang Yuan
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.635-638
    • /
    • 2001
  • Photovoltaic (PV) pumping systems with maximum power point tracking (MPPT) technique aims at obtaining the highest possible power to the pump under various insolation and temperature, thus overcomes the mismatch between the photovoltaic panel and the pumping load. A simple method of tracking the maximum power points and forcing the system to operate close to these points is presented in this paper. The MC68HC908GP32 micro control unit (MCU) is employed to implement the proposed MPPT controller. Experimental results will also show the performances of the photovoltaic pumping system with the MPPT technique.

  • PDF