• 제목/요약/키워드: photovoltaic power conditioning system

검색결과 151건 처리시간 0.023초

Power Loss Analysis of Interleaved Soft Switching Boost Converter for Single-Phase PV-PCS

  • Kim, Jae-Hyung;Jung, Yong-Chae;Lee, Su-Won;Lee, Tae-Won;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • 제10권4호
    • /
    • pp.335-341
    • /
    • 2010
  • In this paper, an interleaved soft switching boost converter for a Photovoltaic Power Conditioning System (PV-PCS) with high efficiency is proposed. In order to raise the efficiency of the proposed converter, a 2-phase interleaved boost converter integrated with soft switching cells is used. All of the switching devices in the proposed converter achieve zero current switching (ZCS) or zero voltage switching (ZVS). Thus, the proposed circuit has a high efficiency characteristic due to low switching losses. To analyze the power losses of the proposed converter, two experimental sets have been built. One consists of normal devices (MOSFETs, Fast Recovery (FR) diodes) and the other consists of advanced power devices (CoolMOSs, SiC-Schottky Barrier Diodes (SBDs)). To verify the validity of the proposed topology, theoretical analysis and experimental results are presented.

태양광발전용 3kW급 PCS개발 (Development of Power Conditioning System for Photovoltaic Power Generation Systems)

  • 민병권;류승표;전세봉;이봉우;김남해
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.123-126
    • /
    • 2005
  • Recently, because of the depletion of fossil fuels and the environmental pollution by using fossil fuels and harmfulness of atomic power plants. the interests concerning new and renewable energy resources are rising increasingly. And of all new and renewable energy sources the PV generation systems are recognized as the most useful and desirable renewable energy source in allowance for installation conditions. In this development, the 3kWp photovoltaic power generation system is realized to verify the performance of the 3kWp PCS developed by Hyundai Heavy Industries Co. (HHI). The photovoltaic array used in this system is composed of 60 modules of 50Wp capacity. The developed system is tested as procedures and items of test regulation recognized by governmen and the experimental results show the excellent electrical characteristics. Now, the 3kWp PCS developed is installed in the PV model house built in HHI plant and is being tested for practical use commercialization.

  • PDF

웨이브렛 변환을 이용한 태양광 발전시스템의 power quality 측정에 관한 연구 (The study on the power quality measurement using wavelet transform in the grid-connected photovoltaic system)

  • 김일송
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.51.1-51.1
    • /
    • 2010
  • 본 논문에서는 wavelet 변환을 이용하여 태양광 발전 시스템의 계통 전원 고조파를 측정하는 방법을 연구하였다. PCS(Power Conditioning System)는 태양전지의 전력을 교류로 변환하여 계통에 연계시키는 장치이다. 직류에서 교류로 변환할 때 스위칭 노이즈가 발생하고, 전력품질이 약화되게 된다. Wavelet 이론은 시간 파형을 주파수 성분으로 분해할 수 있는 기술이다. 이중에서 MLD(Multi-evel Decomposition)기법은, 계산량이 적으면서도 빠른 시간 내에 고조파 성분들을 알아낼 수 있다. 시스템 모델링과 wavelet 이론 소개, 그리고 컴퓨터 모의실험과 DSP 제어기를 이용한 실험 결과로서 본 연구의 타당성을 입증하였다.

  • PDF

태양광 발전시스템에서의 벅 컨버터 제어기 설계 (Design of Buck Converter Controller in the Photovoltaic Power Conditioning System)

  • 정승환;최익;임지훈;최주엽;안진웅;이동하
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.377-382
    • /
    • 2009
  • modelling of the buck converter in photovoltaic power conditioning system is not a possibility of doing with input-output relationship from existing procedures. Because the input current and voltage of the buck converter in fluctuate at any time. The controller which design with the method which has like this error cannot have a good efficiency. In this paper, firstly, in order to design accurate controller of buck converter, new model is proposed. The modeling used a state-space averaging method and came to accomplish. Secondly, the process which design the controller is described. Finally, the simulation results are analyzed.

  • PDF

대규모 태양광 발전설비를 위한 전력변환기 개발 (Development of 250kW Power Conditioning System for Large Scale Photovoltaic Power Plant)

  • 강호현;정홍주;김왕문;서인영
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.640-642
    • /
    • 2008
  • This paper presents the design, development and performance of a 250kW power conditioning system(PCS) for large scale photovoltaic power plant. The PV inverter consists of a three phase IGBT stack, L-C filter, transformer and HMI unit for monitoring. To verify the performance of the PV inverter a testing facility was designed and constructed to simulate the characteristics of the solar cell and grid.

  • PDF

독립형 태양광 인버터의 병렬 운전 기법 (Parallel operating technique for the stand alone PV PCS)

  • 정구인;권정민
    • 한국태양에너지학회 논문집
    • /
    • 제35권6호
    • /
    • pp.9-15
    • /
    • 2015
  • In this paper, a parallel operating technique for the stand alone photovoltaic (PV) power conditioning system (PCS) is proposed. The proposed parallel operating technique can increase the power rating of the system easily. Also, it provide three-phase connection function. The proposed technique does not separated master and slave system. Also, it does not use the separated synchronization line. Therefore, the PCS can supply continuous power even if one of the PCS breaks down. This technique is composed of a phase locked loop (PLL) control, droop control, current limit control and etc. Experimental result obtained on 2-kW prototype to verify the proposed technique.

태양광발전시스템의 장기운전에 의한 성능특성 분석 (The Long-term Operating Evaluation of the Grid Connected Photovoltaic System)

  • 김의환;강승원;김재언
    • 신재생에너지
    • /
    • 제7권2호
    • /
    • pp.28-35
    • /
    • 2011
  • Recently, photovoltaic systems have been devolved into much larger systems up to MW-scale. Photovoltaic industry participants give their focus on power generation capability of photovoltaic modules because their benefits can be decided from the amount of generation. The information on long-term performance change of photovoltaic modules helps to estimate the amount of power generation and evaluate the economic cost-benefits. Long-term performance of a PV system has been analyzed with operation data for 12 years from 1999 to 2010. In the first year, the amount of yearly power generation was 57.7 MWh with 13.2% capacity factor. In 2007, the amount of yearly generation was 44.3 MWh with 10.14% capacity factor, and in 2010, the amount was decreased down to 38.1 MWh with 8.7% capacity factor. The result means that long-term capacity factor has been 4.5% decreased for 12 years and that the amount of generation has been decreased 34.0% for 12 years which is 2.8 % per year. The latter capacity factor has been decreased faster than 0.20%, the average rate for 10 years. The performance decrease of the PV system is meant to be accelerated. The decrease of performance and utilization is due to aged deterioration of photovoltaic modules and lowering conversion efficiency of PCS.

태양광발전시스템의 장기운전에 의한 성능변화 분석 (Performance Analysis of long term operation for photovoltaic system)

  • 김의환;김정삼
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.110.1-110.1
    • /
    • 2011
  • This study analyzed the performance of long term operation photovoltaic system The 50 kWp grid connected photovoltaic system which was installed at KEPRI site in 1999 has been operated more than 12 years. In order to acquire long term operation characteristics of medium size photovoltaic system, the operation test data related on power generation electricity and capacity factor of 50 kWp system, which have been collected since 1999, were analysed. From the analysing results, 57.7 MWh in annual power generation electricity of 50 kWp photovoltaic system in 1999 has been decreased 49.1 MWh in 2005 and reached 38.0 MWh in 2010. In addition to, the capacity factor of 50 kWp photovoltaic system also showed 13.2 % in 1999, 11.2% in 2005 and finally reached 8.8% in 2011. The operation test data showed a trend of decreasing of generation electricity and capacity factor during the 12 years operation time and we guessed that was caused by solar cell performance degradation and decreasing of PCS system efficiency.

  • PDF

Monitoring and Analysis of 3kW Grid-Connected PV System for Performance Evaluation

  • So Jung-Hun;Jung Young-Seok;Yu Gwon-Jong;Choi Ju-Yeop;Choi Jae-Ho
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권1호
    • /
    • pp.57-62
    • /
    • 2005
  • Grid-connected photovoltaic (PV) systems were installed and monitored at the field demonstration test center (FDTC) in Korea in October 2002. Before long-term field testing of installed PV systems, the performances of PV components were evaluated and compared through short-term performance tests of each of the PV system components such as power conditioning system and PV module under standard test conditions. A data acquisition system has been constructed for measuring and analyzing the performance of PV systems to observe the overall effect of environmental conditions on their operation characteristics. Performances of PV systems have been evaluated and analyzed not only for component perspective (PV array, power conditioning unit) but also for global perspective (system efficiency, capacity factor, electrical power energy) by review of the field test and loss factors of the systems. These results indicate that it is highly imperative to develop an optimum design technology of grid connected PV systems. The objective of this paper is not only to evaluate and analyze the performance of domestic PV systems application through long-term field testing at FDTC but also to develop evaluation, analysis and optimum technology for long-term stability and reliability of grid-connected PV systems in Korea.

태양광 발전용 전력변환장치 개발 (Development of Power Conditioning System for Photovoltaic Power Generation System)

  • 송두영;김태훈;김진욱;이태원;김돈식;원충연;김재형;김준구
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 하계학술대회 논문집
    • /
    • pp.275-276
    • /
    • 2010
  • 최근 신재생 에너지 발전에 대한 관심이 증가하고 있는 가운데 태양광 발전시스템은 그중에서도 가장 친환경적인 시스템으로 인정받고 있다. 소음 및 안전성 측면에서 볼 때 가정에서 이용하기 좋은 발전시스템이기 때문에 많은 기업들이 가정용 발전시스템의 관련 제품들을 개발하고 있다. 그중에서도 핵심적으로 이용되는 PVPCS (Photovoltaic Power Conditioning System)는 다른 전력변환 장치들과 마찬가지로 고 효율화 하는 것이 최대 목표라 할 수 있다.

  • PDF