• 제목/요약/키워드: photosynthetic pigments

검색결과 83건 처리시간 0.026초

미세조류 유래 고부가 유용물질 (High-Value Materials from Microalgae)

  • 오희목;최애란;민태익
    • 한국미생물·생명공학회지
    • /
    • 제31권2호
    • /
    • pp.95-102
    • /
    • 2003
  • 미세포류는 다양한 서식환경, 분류군, 종조성 등의 특징을 갖는 미생물군이며 , 이들은 각종 유용물질을 생산하는 것으로 알려지고 있다. 따라서 지금까지 유용물질 생산을 위하여 집중적으로 연구되었던 세균, 곰팡이 등과 함께 미래의 유용한 물질생산의 보고로 간주되고 있다. 미세조류 배양의 가장 큰 장점은 대부분의 작물생산에 적합하지 않는 높은 염도, 강한 알카리 등의 극한 환경에서도 성장하는 조류가 있다는 점이다. 최근 유용 미생물 탐색, 미생물 배양, 유용물질 탐색기술 등의 기반 기술이 크게 발달하면서 미세조류 배양 및 물질생산 비용은 점차 저렴해지고 있다. 또한 최근 급격히 발달된 생명공학기술을 이용한 유전공학적 조류주 개량 등으로 유용물질 생산 효율도 크게 증가시킬 수 있게 되었다. 한편 전 세계적으로 지구환경문제가 중요 쟁점으로 등장하였으며, 동시에 생물다양성협약 등 생물자원의 보존 및 확보가 무엇보다도 중요한 시점이라 할 수 있다. 미세조류의 대량배양 시 배지로서 축산폐수를 이용한다면 유용물질의 생산과 동시에 폐수의 고차처리, 대기 중 이산화탄소의 고정화 등 당면한 환경문제를 해결할 수 있는 환경친화적 기술로 평가되고 있다. 따라서 미세조류의 대량배양을 통하여 biomass로부터 건강보조식품, 천연색소, 의약용 물질 등의 고부가 유용물질을 생산하여 경제적 가치를 창출할 수 있다. 또한 미세조류의 대량배양은 부수적으로 생물학적 이산화탄소 고정화를 통한 대기 중 농도감소 등의 지구환경문제의 해결에도 기여할 수 있다. 즉, microalgal biotechnolog는 생물산업의 활성화와 함께 횐경산업의 발전을 도모할 수 있는 유망한 미래 산업으로서 앞으로 큰 발전이 기대된다. 수 있음을 보인다.옥천비변성대의 고생대 지층에서도 보고된 바 있기 때문에 옥천대에 광역적으로 일어난 것으로 생각된다.didn′t have purchase intention of apparel on Internet shopping malls were summarized and labeled as: difficulty of decision making due to virtual shopping environment, insufficiency of diverse apparels, users′ unease handling, risk of incredible apparel quality, unfamiliarity of Internet shopping and risks of unsecurity. Difficulty of decision making due to virtual shopping environment was determined as the most important factor of reasons that respondents didn′t have purchase intention of apparels in website.previous experience" in both cases. The rural housewives bought clothes when they had any "event" and urban housewives bought them when they had "extra money or sale".ng about the real environmental damage of the vehicles. In the paper we describe "how should the

Physiological Responses and Phytoextraction Potential of Pinus thunbergii on Cd-contaminated Soil

  • Han, Sim-Hee;Kim, Du-Hyun;Ultra, Venecio U. Jr.;Lee, Jae-Cheon
    • 한국산림과학회지
    • /
    • 제99권5호
    • /
    • pp.711-719
    • /
    • 2010
  • We investigated physiological responses and phytoextraction ability of Pinus thunbergii in cadmium contaminated soil as part of our efforts in identifying plant materials for the restoration and revegetation of forest soil contaminated by heavy metals. Thirty seedlings (ten per treatment) were assigned to three treatments (control, 0.3 and 0.6 mM $CdSO_4$ solution) at first year experiment. At second year, ten seedlings per treatment treated with Cd during the first year experiment were divided by two groups (no Cd-treated and consecutive Cd-treated group). At first experiment, photosynthetic pigment content, and superoxide dismutase (SOD) and glutathione reductase (GR) activities have significantly reduced by Cd application, and the reduction rate was increased much higher as the rate of Cd application increased. On the other hand, thiol and malondialdehyde (MDA) content were significantly increased at the application of 0.6 mM of Cd. At the second year experiment, a general increase in chlorophyll and carotenoid content was observed with Cd treatment while SOD and GR activities showed a relative reduction compared to the control. Similar to the first year measurement, thiol and MDA contents also increased considerably due to Cd treatment. At harvest, dry matter was significantly reduced by Cd treatment especially at the rate of 0.6 mM Cd, but dry yield of P. thunbergii treated with 0.3 mM Cd was less affected and it was comparable with the control seedling. Cadmium concentration in seedling tissues increased with increasing Cd application rate while Cd uptake was higher in seedlings supplied with 0.3 mM Cd, which could be ascribed to their high dry matter. Overall, our study has demonstrated the unique physiological response of P. thunbergii to Cd-prolonged exposure by showing that the changes in photosynthetic pigment content and antioxidative enzyme activities were dependent on the concentration and duration of treatment. In addition, our results have demonstrated the potential of P. thunbergii to withstand up to 0.3 mM Cd (equivalent to cumulative Cd concentration of 134.4 to 268 mg $kg^{-1}$) without showing growth reduction, hence it might be used for phytoremediation of Cd contaminated areas.

HPLC 및 Diving-PAM을 이용한 낙동강 하구 저서미세조류의 광합성 특성 (Photosynthetic Characteristics of Benthic Microalgae Measured by HPLC and Diving Pulse Amplitude Modulated (PAM) Fluorometry on the Nakdong River Estuary of the Korean Peninsula)

  • 김정배;정미희;박정임
    • 생태와환경
    • /
    • 제57권2호
    • /
    • pp.61-74
    • /
    • 2024
  • 낙동강 하구에 위치한 대마등은 모래톱으로 형성되어 있으며, 잘 발달된 조간대 갯벌을 갖고 있다. 본 연구에서는 2011년 1월부터 12월까지 대마등 갯벌에서 저서미세조류의 서식환경, 광합성 색소와 광합성률을 알아보았다. 퇴적물 공극수의 무기질소는 주로 암모늄염이고, 상부 수의 무기질소는 주로 질산염+아질산염으로 나타났다. Chlorophyll a 및 Fucoxanthin 농도는 퇴적물 표층이, 전체 퇴적층 평균값보다 현저히 높았다. 전체 조사기간 중 저서미세조류의 최대양자수율의 평균값은 0.52±0.03이었으며, 최고값은 2월(0.61±0.08)에 관측되었다. 최대전자전달률은 봄부터 초가을(4월에서 10월까지)까지는 높고 겨울에서 초봄(1월에서 3월 및 11월, 12월)까지는 낮은 계절적인 경향을 보였고, 최고값은 7월, 최저값은 1월에 나타났다. 시간별 저서미세조류의 최대 양자수율의 평균값은 0.48±0.03이었으며, 최고값(0.61±0.08)은 정오에 관측되었다. 최대전자전달률은 정오에 최고 값과 16시에 최저값을 보였다. 이로써 저서미세조류의 생산성은 조사시간 및 퇴적물 깊이에 따라 현저한 차이가 나타나므로 Diving-PAM을 사용하여 저서미세조류의 생산성을 정량화하기 위해서는 물때를 기준으로 조사가 이루어져야 하며, 동시에 퇴적물 층별 색소분석도 수행되어야 할 것으로 판단된다.

Pigment and Saikosoponin Production Through Bioreactor Culture of Carthamus tinctorius and Bupleurum falcatum

  • Wenyuan Gao;Lei Fan;Hahn, Eun-Joo;Paek, Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • 제3권1호
    • /
    • pp.1-5
    • /
    • 2001
  • Traditional culture technology of medicinal plants mainly depends on the field culture, which has many problems. With progress of modern culture technology, it has become possible to produce valuable secondary metabolites from medicinal plants. In this paper, we discuss about the pigment and saikosaponin production from too medicinal plants, Carthamus tinctorius and Bupleurum falcatum, through bioreactor culture system. A two-stage bioreactor culture system was established for the production of yellow and red pigments and saikosaponins by cell suspension cultures of Carthamus tinctorius and Bupleurum falcatum. In Carthamus tinctorius, balloon type airlift bioreactors and column type airlift bioreactors were employed for the tell culture and for the pigment production, respectively. The greatest pigment production was obtained on White medium supplemented with 4 mg/L kinetin, high levels of sucrose concentration and photosynthetic photon flux. In Bupleurum falcatum, adventitious roots were cultured in balloon type airlift bioreactors and the root growth was greatest on SH medium containing 5 mg/L IBA and 0.2 mg/L kinetin. HPLC analysis showed that the contents of main active saikosaponins a, c, and d in adventitious roots were almost the same as those in field cultured root.

  • PDF

Iron Starvation-Induced Proteomic Changes in Anabaena (Nostoc) sp. PCC 7120: Exploring Survival Strategy

  • Narayan, Om Prakash;Kumari, Nidhi;Rai, Lal Chand
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권2호
    • /
    • pp.136-146
    • /
    • 2011
  • This study provides first-hand proteomic data on the survival strategy of Anabaena sp. PCC 7120 when subjected to long-term iron-starvation conditions. 2D-gel electrophoresis followed by MALDI-TOF/MS analysis of iron-deficient Anabaena revealed significant and reproducible alterations in ten proteins, of which six are associated with photosynthesis and respiration, three with the antioxidative defense system, and the last, hypothetical protein all1861, conceivably connected with iron homeostasis. Iron-starved Anabaena registered a reduction in growth, photosynthetic pigments, PSI, PSII, whole-chain electron transport, carbon and nitrogen fixation, and ATP and NADPH content. The kinetics of hypothetical protein all1861 expression, with no change in expression until day 3, maximum expression on the $7^{th}$ day, and a decline in expression from the $15^{th}$ day onward, coupled with in silico analysis, suggested its role in iron sequestration and homeostasis. Interestingly, the up-regulated FBP-aldolase, Mn/Fe-SOD, and all1861 all appear to assist the survival of Anabeana subjected to iron-starvation conditions. Furthermore, the $N_2$-fixation capabilities of the iron-starved Anabaena encourage us to recommend its application as a biofertilizer, particularly in iron-limited paddy soils.

Photochemical Response in 0-Year-Old and 1-Year-Old Needles of Picea glehnii during Cold Acclimation and Low Temperature

  • Bae, Jeong-Jin;Hara, Toshihiko;Choo, Yeon-Sik
    • Journal of Ecology and Environment
    • /
    • 제31권4호
    • /
    • pp.317-325
    • /
    • 2008
  • P. glehnii, an evergreen conifer found in northern areas, is known as a cold-resistant species. In this experiment, we measured the water content, PSⅡ efficiency, chlorophyll fluorescence, pigments of the xanthophyll-cycle and activity of enzymes of the ascorbate-glutathione cycle during cold acclimation and at subsequent low-temperature conditions to examine the importance of acclimation to cold tolerance. P. glehnii showed a decrease in PSⅡ efficiency (especially in Fv) during cold acclimation and at subsequent low temperatures. However, cold-acclimated needles showed higher PSⅡ efficiency at low temperatures than nonacclimated needles. In addition, 0-YON (first-year needles) showed an increase in $\beta$-carotene and lutein, while 1-YON (one-year-old needles) immediately developed an antioxidant mechanism in the ascorbate-gluthathione cycle as soon as they were exposed to low temperature and both 0-YON and 1-YON showed increased zeaxanthin and de-epoxidation ratios at continuous low temperature. Based on our results, we suggest that P. glehnii maintain PSⅡ efficiency at low temperature by effectively protecting the photosynthetic apparatus from photo-damage by rapid induction of an antioxidant mechanism in 1-YON and dissipation of excess energy by $\beta$-carotene and lutein in 0-YON.

LIGHT-DEPENDENT CHANGES OF CHLOROPHYLL FLUORESCENCE AND XANTHOPHYLL CYCLE PIGMENTS IN MAIZE LEAVES DURING DESICCATION

  • Xu, Chang-Cheng;Lee, Choon-Hwan;Zou, Qi
    • Journal of Photoscience
    • /
    • 제5권1호
    • /
    • pp.17-22
    • /
    • 1998
  • Changes of chlorophyll fluorescence and xanthophyll cycle pigment contents in maize leaves were investigated dunng desiccation in darkness or in the light. In darkness, a drastic dehydration of detached maize leaves down to 50% relative water content (RWC) affected photochemical efficiency of photosystem II (Fv/Fm) and pht)tochemical quenching (qP) only slightly. In contrast, desiccation in the light with a moderate intensity led to a pronounced reduction in Fv/Fm with a Fo quenching when RWC was greater than 70%. This reduction in Fv/Fm could be recovered in darkness under hutrod condition. In leaves with RWC below 70%, significant reduction in Fv/Fm was accompanied by an increase of Fo, which could not be reversed within 5 h in darkness under humid condition. The nonphotochemical quenching increased during desiccation in the light with a concomitant rise in zeaxanthin at the expense of violaxanthin. Pretreatment with dithiothreitol (DTT), an inhibitor of zeaxanthin synthesis, inhibited the development of nonphotochemical quenching and prevented the xanthophyll interconversion during desiccation in the light. These results suggest that even light with a moderate intensity becomes excessive under dehydration and zeaxanthin-associated photoprotection of photosynthetic apparatus against photodamage is involved, but the protection is not complete against severe desiccation.

  • PDF

담배의 생장과 광합성에 미치는 카드뮴의 독성과 이에 대한 칼슘의 효과 (Cadmium Toxicity and Calcium Effect on Growth and Photosynthesis of Tobacco)

  • 노광수;진휘승
    • 생명과학회지
    • /
    • 제15권3호
    • /
    • pp.453-460
    • /
    • 2005
  • 담배의 생장과 광합성 색소 및 효소에 대한 카드뮴의 독성과 이에 대한 칼슘의 영향을 연구하였다. 카드뮴에 의한 생장과 엽록소 수준에서의 억제 현상은 칼슘에 의해 회복되었다. 특히, 엽록소의 함량은 카드뮴만 처리한 것 보다 카드뮴과 칼슘을 같이 처리하였을 때 현저하게 증가하였다. 또한 rubisco의 활성과 함량은 카드뮴을 처리한 것 보다 처리하지 않았을 때 현저하게 감소하였으며, 카드뮴의 이러한 효과는 칼슘에 의해 환원되었다. Rubisco activase의 활성과 함량도 rubisco와 같은 경향을 보였다. Rubisco에서 카드뮴과 칼슘에 의해 유도되는 이와 같은 변화는 rubisco activase에 의해 기인됨을 의미한다.

Temporal Variation of Phytoplankton Community Related to Water Column Structure in the Korea Strait

  • Lee, Yong-Woo;Park, Hyun-Je;Choy, Eun-Jung;Kim, Yun-Sook;Kang, Chang-Keun
    • Ocean and Polar Research
    • /
    • 제32권3호
    • /
    • pp.321-329
    • /
    • 2010
  • Photosynthetic pigments, nutrients, and hydrographic variables were examined in order to elucidate the spatio-temporal variation of water column structure and its effect on phytoplankton community structure in the western channel of the Korea Strait in fall 2006 and spring 2007. High phytoplankton biomass in the spring was associated with high salinity, implying that nutrients were not supplied by coastal waters or the Yangtze-River Diluted water (YRDW) with low salinity. Expansion of the Korea Strait Bottom Cold Water (KSBCW) and a cold eddy observed during the spring season might enhance the nutrient supply from the subsurface layer to the euphotic zone. Chemotaxonomic examination showed that diatoms accounted for 60-70% of total biomass, followed by dinoflagellates. Nutrient supply by physical phenomena such as the expansion of the KSBCW and the occurrence of a cold eddy appears to be the controlling factors of phytoplankton community composition in the Korea Strait. Further study is needed to elucidate the mechanisms by which the KSBCW is expanded, and its role in phytoplankton dynamics.

SOME EVIDENCE REGARDING REPAIRING, RECOVERY AND OVER-COMPENSATING PROCESSES DURING ONTOGENESIS, AFTERX-RAY-IRRADTATION OF BEAN SEEDS

  • Korosi, F.;Jezierska-Szabo, E.;Laszlo, P.;Felfoldi, J.
    • 한국유기농업학회지
    • /
    • 제3권1호
    • /
    • pp.11-22
    • /
    • 1994
  • Exposing plant organs to high doses of ionizing irradiation, penetrating into the plant tis-sues and cells, along the track structure of particles, lesions, and sublesions are formed on the molecules and organelles. As a result, disorders in the growth and development as well as chlorophyll-deficiency symptoms occur. The time scale of their reparation, recovery and over compensation during ontogenesis, constitutes a question of high theoretical and practical importanced, with special regard to nuclear fallout. With an aim to model the “ut supra”stated phenomena, the seeds of bean, Echo elit licensed variety, were irradiated by 300 Gy dose of X-ray-irradiation (120 kV:4.5 mA). According to the data obtained, the biosynthesis of photosynthetic pigments, will have been completed by the beginning of flowering. In consequence of the overcompensation of the repairing processes, the organs of plants developed from irradiated seeds, showed a partly differing correlative growth, compared to those of control plants. In order to characterize the vivo response of radiation-injured plants, a new method and approach were used. The changes of the electric capacitance of the plants during their ontogenesis, were continously monitored and recorede via a computer-aided and controlled measurement. In view of the data collected in such a way, the repairing plants may respond more quickly and intensively to the changes of environmental factors.

  • PDF