DOI QR코드

DOI QR Code

Cadmium Toxicity and Calcium Effect on Growth and Photosynthesis of Tobacco

담배의 생장과 광합성에 미치는 카드뮴의 독성과 이에 대한 칼슘의 효과

  • Published : 2005.06.01

Abstract

This investigation was performed to study Cd toxicity and the influence of Ca on Cd toxicity in growth, and photosynthetic pigments and enzymes in tobacco. Cd inhibited both growth and level of chlorophyll, but the inhibition was compensated by the treatment of Ca. Especially, chlorophyll content was significantly increased by the combination of Cd and Ca treatment compared with Cd treatment alone. In addition, activity and content of rubisco by Cd treatment was also significantly lesser than the non-treated control. The highly reduced activity of rubisco was minimized by the combined treatment of Ca to Cd. Rubisco activase activity and content also showed a pattern of change similar to the rubisco level, suggesting that Cd- and Ca-induced changes of rubisco could be caused by rubisco activase.

담배의 생장과 광합성 색소 및 효소에 대한 카드뮴의 독성과 이에 대한 칼슘의 영향을 연구하였다. 카드뮴에 의한 생장과 엽록소 수준에서의 억제 현상은 칼슘에 의해 회복되었다. 특히, 엽록소의 함량은 카드뮴만 처리한 것 보다 카드뮴과 칼슘을 같이 처리하였을 때 현저하게 증가하였다. 또한 rubisco의 활성과 함량은 카드뮴을 처리한 것 보다 처리하지 않았을 때 현저하게 감소하였으며, 카드뮴의 이러한 효과는 칼슘에 의해 환원되었다. Rubisco activase의 활성과 함량도 rubisco와 같은 경향을 보였다. Rubisco에서 카드뮴과 칼슘에 의해 유도되는 이와 같은 변화는 rubisco activase에 의해 기인됨을 의미한다.

Keywords

References

  1. Aro, E. M., J. Virgin and B. Andersson. 1993. Photoinhibition of photosystem II. Inactivation, protein, protein damage and tumover. Biochem. Biophys. Acta 1143, 113-134 https://doi.org/10.1016/0005-2728(93)90134-2
  2. Boddi, B., A. R. Oravecz and E. Lehoczki. 1995. Effect of cadmium on organization and photoreduction of protochlorophyllide in dark-grown leaves and etiopIast inner membrane preparations of wheat. Photosynthetica 31, 411-420
  3. Catalado, D. A., T. R. Garland and R. E. Wildung. 1981. Cadmium distribution and chemical fate in soybean plants. Plant Physiol. 68, 835-839 https://doi.org/10.1104/pp.68.4.835
  4. Chen, Y. and A. J. Huerta. 1997. Effect of sulfur nutrition on photosynthesis in cadmium-treated barley seedlings. J. plant Nutrition 20, 845-856 https://doi.org/10.1080/01904169709365300
  5. Choi, Y. E., E. Harada, M. Wada, H. Tsuboi, Y. Morita, T. Kusano and H. Sano. 2000. Detoxification of cadmium in tobacco plants: formation and active excretion of crystals containing cadmium and calcium through trichomes. Planta 213, 45-50 https://doi.org/10.1007/s004250000487
  6. Clarkson, D. T. 1984. Calcium transport between tissues and its distribution in the plant. Plant Cell Environ. 7, 449-456 https://doi.org/10.1111/j.1365-3040.1984.tb01435.x
  7. Clarkson, D. T. and U. Liittge. 1989. Mineral nutrition: Divalent cations, transport and compartimentation. Progr. Bot. 51, 93-100
  8. Cramer, G. R., A. Luuchli and E. Epstein. 1986. Effects of NaCl and CaCh on ion activities in complex nutrient solutions and root growth of cotton. Plant Physiol. 81, 792-797 https://doi.org/10.1104/pp.81.3.792
  9. Downton, W. J. S., O. Bjorkman and C. S. Pike. 1980. Consequences of increased atmospheric concentrations of carbon dioxide for growth and photosynthesis of higher plant. Pp. 143-151, In G. J. Pearman (ed.). Carbon Dioxide and Climate. Australian Research, Australian Academy of Science, Canberra
  10. Dube, S. J. and J. F. Bornman. 1992. Response of spruce seedlings to simultaneous exposure to ultraviolet-B radiation and cadmium. Plant Physiol. Biochemistry 30, 761-767
  11. Ehret, D. L, R. E. Remann, B. J. Harvey and A. Cipywnyk. 1990. Salinity-induced calcium deficiencies in wheat and barley. Plant Soil 128, 143-151 https://doi.org/10.1007/BF00011103
  12. Greger, M. and E. Ogren. 1991. Direct and indirect effects of $Cd^{2+}$ on photosynthesis in sugar beet (Beta vulgaris). Physiol. Plant. 83, 129-135 https://doi.org/10.1111/j.1399-3054.1991.tb01291.x
  13. Hartman, F. C. and M. R. Harpel. 1994. Structure, function, regulation and assembly of D-ribulose-1,5-bisphosphate carboxylase/oxygenase. Ann. Rev. Biochem. 63, 197-234 https://doi.org/10.1146/annurev.bi.63.070194.001213
  14. Inskeep, W. P. and P. R. Bloom. 1985. Extinction coefficients of chlorophyll a and b in N, N-dimethylformamide and 80% acetone. Plant Physiol. 77, 483-485 https://doi.org/10.1104/pp.77.2.483
  15. Jackson, P. J., P. J. Unkefer, E. DeIhaize and N. J. Robinson. 1990. Mechanism of trace metal tolerance in plants. pp. 231-255, In F. Katterman (ed.). Environmental Injury to Plants. Academic Press, New York, USA
  16. Krupa, Z. 1987. Cadmium-induced changes in the composition and structure of the light-harvesting chlorophyll a/b protein complex II in radish cotyledons. Physiol. Plant. 73, 518-524 https://doi.org/10.1111/j.1399-3054.1988.tb05435.x
  17. Larsson, E., H. Bornman and H. Asp. 1998. Influence of UV-B radiation and $Cd^{2+}$ on chlorophyll fluorescence, growth and nutrient content in Brassica napus. J. Exp. Bot. 49, 1031-1039 https://doi.org/10.1093/jexbot/49.323.1031
  18. Lauchli, A. 1990. Calcium, salinity and the plasma membrane. pp. 26-35, In R. T. Leonard, P. K. Hepler (eds.). Calcium in Plant Growth and Development. American Society of Plant Physiology, Rockville, MD
  19. Lorimer, G. H. and H. M. Miziorko. 1980. Carbamate formation on the e-amino group of a lysyl residue as the basis for the activation of ribulose bisphosphate carboxylase by $CO_2$. and $Mg^{2+}$. Biochemistry 19, 5321-5328 https://doi.org/10.1021/bi00564a027
  20. Maksymiec, W. and T. Baszynski. 1998. The role of Ca in changes induced by excess $Cu^{2+}$ in bean plants. Growth parameters. Acta Physiol. Planta 20, 411-417 https://doi.org/10.1007/s11738-998-0028-y
  21. Maksymiec, W. and T. Baszynski. 1999. The role of of $Ca^{2+}$ ions in modulating changes induced in bean plants by an excess of of $Cu^{2+}$ ions. Chlorophyll fluorescence measurements. Physiol. Plant. 105, 562-568 https://doi.org/10.1034/j.1399-3054.1999.105323.x
  22. Marschner, H. 1995. Mineral Nutrition of Higher Plants. 2nd ed., Academic Press, London, UK
  23. Milivojevic, D. and D. Stojanovic. 2003. Role of calcium in aluminum toxicity on content of pigment and pigmentprotein complexes of soybean. J. Plant Nutrition 26, 341-350 https://doi.org/10.1081/PLN-120017140
  24. Murashige, T. and F. Skoog. 1962. A revised medium for growth and bioassays with tobacco tissue culture. Physiol. Plant 15, 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  25. Navarro, J. M., V. Martinez and M. Carvajal. 2000. Ammonium, bicarbonate and calcium effects on tomato plants grown saline conditions. Plant Science 157, 89-96 https://doi.org/10.1016/S0168-9452(00)00272-7
  26. Olmos, E., J. R. Martinez-Solano, A. Piqueras and E. Hellin. 2003. Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). J. Exp. Bot. 54, 291-301 https://doi.org/10.1093/jxb/54.381.291
  27. Ouariti, O., N. Boussama, M. Zarrouk, A. Cherif and M. H. Ghorbal. 1997. Cadmium- and copper-induced changes in tomato membrane lipids. Phytochemistry 45, 1343-1350 https://doi.org/10.1016/S0031-9422(97)00159-3
  28. Ouzounidou, G. 1994. Root growth and pigment composition in relationship to element uptake in Silene compacta plants treated with copper. J. Plant Nutr. 17, 933-943 https://doi.org/10.1080/01904169409364778
  29. Pankovic, D., M. Plesnicar, J. Arsenijevic-Maksimovic, N. Petrovic, Z. Sakac and R. Kastori. 2000. Effects of nitrogen nutrition on phosynthesis in Cd-treated sunflower plants. Ann. Botany 86, 841-847 https://doi.org/10.1006/anbo.2000.1250
  30. Pierce, J. 1983. Determinants of substrate specificity and the role of metal in the reaction of ribulose bisphosphate carboxylase/oxygenase. Plant Physiol. 81, 934-945 https://doi.org/10.1104/pp.81.3.934
  31. Portis, A. R. Jr. 1990. Rubisco activase. Biochim. Biophys Acta 1015, 15-28 https://doi.org/10.1016/0005-2728(90)90211-L
  32. Portis, A. R. Jr. 2003. Rubisco activase: Rubisco's catalytic chaperone. Photosynthesis Research 75, 11-27 https://doi.org/10.1023/A:1022458108678
  33. Prasad, M. N. V. 1995. Cadmium toxity and tolerance in vascular plants. Envir. Exp. Bot. 35, 525-545 https://doi.org/10.1016/0098-8472(95)00024-0
  34. Racker, E. 1962. Ribulose diphosphate carboxylase from spinach leaves. Methods Enzymol. 5, 266-270 https://doi.org/10.1016/S0076-6879(62)05216-7
  35. Reddy, A. S. N. 2001. Calcium: silver bullet in signaling. Plant Science 160, 381-404 https://doi.org/10.1016/S0168-9452(00)00386-1
  36. Robinson, S. P. and A. R. Portis Jr. 1989. Adenosine triphosphate hydrolysis by purified rubisco activase. Arch. Biochem. Biophys. 268, 93-99 https://doi.org/10.1016/0003-9861(89)90568-7
  37. Robinson, S. P., V. J. Streusand, J. M. Chatrield and A. R. Portis Jr. 1988. Purification and assay of rubisco activase from leaves. Plant Physiol. 88, 1008-1014 https://doi.org/10.1104/pp.88.4.1008
  38. Roh, K. S., J. S. Kim, B. W. Kim, J. S. Song, H. S. Chung and S. D. Song. 1997. Decrease in carbamylation of rubisco by high $CO_2$ concentration is due to decrease of rubisco activase in kidney bean. J. Plant Biology 40, 73-79 https://doi.org/10.1007/BF03030237
  39. Roh, K. S., J. K. Kim, S. D. Song, H. S. Chung and J. S. Song. 1996. Decrease of the activation and carbamylation of rubisco by high $CO_2$ in kidney bean. Kor. J. Biotechnol. Bioeng. 11, 295-302
  40. Ruan, J., J. Ma, Y. Shi and W. Han. 2004. The impact of pH and calcium on the uptake of fluoride by tea plants (Camellia sinensis 1.). Ann. Botany 93, 97-105 https://doi.org/10.1093/aob/mch010
  41. Salvucci, M E. 1989. Regulation of rubisco activity in vivo. Physiol. Plant. 77, 164-171 https://doi.org/10.1111/j.1399-3054.1989.tb05993.x
  42. Salvucci, M. E., A. R. Portis Jr. and W. J. Ogren. 1985. A soluble chloroplast protein catalyzes ribulose-bisphosphate carboxylase/oxygenase activation in vivo. Photosynthesis Research 7, 191-203
  43. Sandalio, J. M., H. C. Dalurzo, M. Gomez, M C. Romero-Puertas and J. A Del Rio. 2001. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot. 52, 2115-2126
  44. Sanders, D., C. Brownlee and J. F. Harper. 1999. Communicating with calcium. Plant Cell 11, 691-706 https://doi.org/10.1105/tpc.11.4.691
  45. Shah, K. and R. S. Dubey. 1995. Effect of cadmium on RNA level as well as activity and molecular forms of ribonuclease in growing rice seedlings. Plant Physiol. Biochem. 33, 577-584
  46. Sharma, S. S., S. Kaul, A Metwally, K. C. Goyal, J. Finkemeier and K-J Dietz. 2004. Cadmium toxicity to barley (Hordeum vulgare) as affected by varying Fe nutritional status. Plant Science 166, 1287-1295 https://doi.org/10.1016/j.plantsci.2004.01.006
  47. Siedlecka, A. and Z. Krupa. 1996. Interaction between cadmium and iron and its effects on photosynthetic capacity of primary leaves of Phaseolus vulgaris. Plant Physiol. Biochem. 34, 833-841
  48. Siedlecka, A, Z. Krupa, G. Samuelson, G. Oquist and P. Gardestriin. 1997. Primary carbon metabolism in Phaseolus vulgaris plants under $Cd^{2+}$/Fe interaction. Plant Physiol. Biochem. 35, 951-957.
  49. Snedden, W. A and H. Fromm. 1998. Calmodulin, calmodulinrelated proteins and plant responses to the environment. Trends Plant Sci. 3, 299-304 https://doi.org/10.1016/S1360-1385(98)01284-9
  50. Stiborova, M 1988. $Cd^{2+}$ ions affect the quaternary structure of ribulose-1,5-bisphosphate carboxylase from barley leaves. Biochemia Physiologia Pflanzen 183, 371-378. https://doi.org/10.1016/S0015-3796(88)80045-3
  51. Stiborova, M, M. Ditrichova and A Brezinona. 1987. Effect of heavy metal on growth and biochemical characteristics of photosynthesis of barley and maize seedlings. Biologica Plantarum 29, 453-469 https://doi.org/10.1007/BF02882221
  52. Stobart, A. K., W. T. Griffiths, J. Ameen-Bukhari and R. P. Sherwood. 1985. The effect of $Cd^{2+}$ on the biosynthesis of chlorophyll in leaves of barley. Physiol. Plant. 63, 293-298. https://doi.org/10.1111/j.1399-3054.1985.tb04268.x
  53. Streusand, V. J. and A. R. Portis Jr. 1987. Rubisco activase mediates ATP-dependent activation of ribulose bisphosphate carboxylase. Plant Physiol. 85, 152-154 https://doi.org/10.1104/pp.85.1.152
  54. Van Assche, F. and H. Clijsters. 1990. Effects of metals in enzyme activity in plants. Plant Cell Environ. 13, 195-206 https://doi.org/10.1111/j.1365-3040.1990.tb01304.x
  55. Vinit-Dunand, F., D. Epron, B. Alaoui-Sosse and P. M. Badol. 2000. Effects of copper on growth and on photosynthesis in cucumber plants. Plant Science 163, 53-58 https://doi.org/10.1016/S0168-9452(02)00060-2
  56. Wang, Z. Y., G. W. Snyder, B. D. Esau, Portis, A. R. Jr. and W. L. Ogren. 1992. Species-dependent variation in the interaction of substrate-bound ribulose-1,5-bisphosphate carboxylase/oxygenase and rubisco activase. Plant Physiol. 100, 1858-1862 https://doi.org/10.1104/pp.100.4.1858
  57. White, P. J. 2000. Calcium channels in higher plants. Biochim. Biaphy. Acta 1465, 171-189 https://doi.org/10.1016/S0005-2736(00)00137-1
  58. White, P. J. 2001 The pathways of calcium movement to the xylem. J. Exp. Bot. 52, 891-899 https://doi.org/10.1093/jexbot/52.358.891
  59. White, P. J. and M. R. Broadley. 2003. Calcium in plants. Ann. Botany 92, 487-511 https://doi.org/10.1093/aob/mcg164
  60. Woolhouse, H. W. 1983. Toxicity and tolerance of plants to heavy metals. Encycl. Plant Physiol. 12, 246-300
  61. Zenk, M. H. 1996. Heavy metal detoxification in higher plants. Rev. Gene 179, 21-30

Cited by

  1. Influence of Ammonium against Cadmium Effect on in vitro Growth, Chlorophyll and RubiscojRubisco Activase in Tobacco Leaves. vol.18, pp.5, 2008, https://doi.org/10.5352/JLS.2008.18.5.660
  2. Effects of Ethylsalicylic Acid on Growth and Rubisco/Rubisco Activase in Tobacco Plant Cultured under Cadmium Treatment in vitro vol.24, pp.5, 2014, https://doi.org/10.5352/JLS.2014.24.5.558
  3. The Reverse Effect of Salicylic Acid on Cd-induced Growth, Chlorophyll, and Rubisco/Rubisco Activase in Tobacco vol.22, pp.6, 2012, https://doi.org/10.5352/JLS.2012.22.6.778
  4. Physiological Response and Cadmium Accumulation of MuS1 Transgenic Tobacco Exposed to High Concentration of Cd in Soil: Implication to Phytoremediation of Metal Contaminated Soil vol.46, pp.1, 2013, https://doi.org/10.7745/KJSSF.2013.46.1.058
  5. Influence of Nitrate Against Effect of Cadmium on Growth and Rubisco in Seedling of Tobacco. vol.17, pp.5, 2007, https://doi.org/10.5352/JLS.2007.17.5.646
  6. Influence of exogenous application of glutathione on rubisco and rubisco activase in heavy metal-stressed tobacco plant grown in vitro vol.21, pp.1, 2014, https://doi.org/10.1016/j.sjbs.2013.06.002
  7. Influence of Nitrate on Growth, Chlorophyll Content, Content and Activity of Rubisco and Rubisco Activase of Tobacco Plant Treated with Cadmium in vitro vol.20, pp.11, 2010, https://doi.org/10.5352/JLS.2010.20.11.1667