References
- Aro, E. M., J. Virgin and B. Andersson. 1993. Photoinhibition of photosystem II. Inactivation, protein, protein damage and tumover. Biochem. Biophys. Acta 1143, 113-134 https://doi.org/10.1016/0005-2728(93)90134-2
- Boddi, B., A. R. Oravecz and E. Lehoczki. 1995. Effect of cadmium on organization and photoreduction of protochlorophyllide in dark-grown leaves and etiopIast inner membrane preparations of wheat. Photosynthetica 31, 411-420
- Catalado, D. A., T. R. Garland and R. E. Wildung. 1981. Cadmium distribution and chemical fate in soybean plants. Plant Physiol. 68, 835-839 https://doi.org/10.1104/pp.68.4.835
- Chen, Y. and A. J. Huerta. 1997. Effect of sulfur nutrition on photosynthesis in cadmium-treated barley seedlings. J. plant Nutrition 20, 845-856 https://doi.org/10.1080/01904169709365300
- Choi, Y. E., E. Harada, M. Wada, H. Tsuboi, Y. Morita, T. Kusano and H. Sano. 2000. Detoxification of cadmium in tobacco plants: formation and active excretion of crystals containing cadmium and calcium through trichomes. Planta 213, 45-50 https://doi.org/10.1007/s004250000487
- Clarkson, D. T. 1984. Calcium transport between tissues and its distribution in the plant. Plant Cell Environ. 7, 449-456 https://doi.org/10.1111/j.1365-3040.1984.tb01435.x
- Clarkson, D. T. and U. Liittge. 1989. Mineral nutrition: Divalent cations, transport and compartimentation. Progr. Bot. 51, 93-100
- Cramer, G. R., A. Luuchli and E. Epstein. 1986. Effects of NaCl and CaCh on ion activities in complex nutrient solutions and root growth of cotton. Plant Physiol. 81, 792-797 https://doi.org/10.1104/pp.81.3.792
- Downton, W. J. S., O. Bjorkman and C. S. Pike. 1980. Consequences of increased atmospheric concentrations of carbon dioxide for growth and photosynthesis of higher plant. Pp. 143-151, In G. J. Pearman (ed.). Carbon Dioxide and Climate. Australian Research, Australian Academy of Science, Canberra
- Dube, S. J. and J. F. Bornman. 1992. Response of spruce seedlings to simultaneous exposure to ultraviolet-B radiation and cadmium. Plant Physiol. Biochemistry 30, 761-767
- Ehret, D. L, R. E. Remann, B. J. Harvey and A. Cipywnyk. 1990. Salinity-induced calcium deficiencies in wheat and barley. Plant Soil 128, 143-151 https://doi.org/10.1007/BF00011103
-
Greger, M. and E. Ogren. 1991. Direct and indirect effects of
$Cd^{2+}$ on photosynthesis in sugar beet (Beta vulgaris). Physiol. Plant. 83, 129-135 https://doi.org/10.1111/j.1399-3054.1991.tb01291.x - Hartman, F. C. and M. R. Harpel. 1994. Structure, function, regulation and assembly of D-ribulose-1,5-bisphosphate carboxylase/oxygenase. Ann. Rev. Biochem. 63, 197-234 https://doi.org/10.1146/annurev.bi.63.070194.001213
- Inskeep, W. P. and P. R. Bloom. 1985. Extinction coefficients of chlorophyll a and b in N, N-dimethylformamide and 80% acetone. Plant Physiol. 77, 483-485 https://doi.org/10.1104/pp.77.2.483
- Jackson, P. J., P. J. Unkefer, E. DeIhaize and N. J. Robinson. 1990. Mechanism of trace metal tolerance in plants. pp. 231-255, In F. Katterman (ed.). Environmental Injury to Plants. Academic Press, New York, USA
- Krupa, Z. 1987. Cadmium-induced changes in the composition and structure of the light-harvesting chlorophyll a/b protein complex II in radish cotyledons. Physiol. Plant. 73, 518-524 https://doi.org/10.1111/j.1399-3054.1988.tb05435.x
-
Larsson, E., H. Bornman and H. Asp. 1998. Influence of UV-B radiation and
$Cd^{2+}$ on chlorophyll fluorescence, growth and nutrient content in Brassica napus. J. Exp. Bot. 49, 1031-1039 https://doi.org/10.1093/jexbot/49.323.1031 - Lauchli, A. 1990. Calcium, salinity and the plasma membrane. pp. 26-35, In R. T. Leonard, P. K. Hepler (eds.). Calcium in Plant Growth and Development. American Society of Plant Physiology, Rockville, MD
-
Lorimer, G. H. and H. M. Miziorko. 1980. Carbamate formation on the e-amino group of a lysyl residue as the basis for the activation of ribulose bisphosphate carboxylase by
$CO_2$ . and$Mg^{2+}$ . Biochemistry 19, 5321-5328 https://doi.org/10.1021/bi00564a027 -
Maksymiec, W. and T. Baszynski. 1998. The role of Ca in changes induced by excess
$Cu^{2+}$ in bean plants. Growth parameters. Acta Physiol. Planta 20, 411-417 https://doi.org/10.1007/s11738-998-0028-y -
Maksymiec, W. and T. Baszynski. 1999. The role of of
$Ca^{2+}$ ions in modulating changes induced in bean plants by an excess of of$Cu^{2+}$ ions. Chlorophyll fluorescence measurements. Physiol. Plant. 105, 562-568 https://doi.org/10.1034/j.1399-3054.1999.105323.x - Marschner, H. 1995. Mineral Nutrition of Higher Plants. 2nd ed., Academic Press, London, UK
- Milivojevic, D. and D. Stojanovic. 2003. Role of calcium in aluminum toxicity on content of pigment and pigmentprotein complexes of soybean. J. Plant Nutrition 26, 341-350 https://doi.org/10.1081/PLN-120017140
- Murashige, T. and F. Skoog. 1962. A revised medium for growth and bioassays with tobacco tissue culture. Physiol. Plant 15, 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
- Navarro, J. M., V. Martinez and M. Carvajal. 2000. Ammonium, bicarbonate and calcium effects on tomato plants grown saline conditions. Plant Science 157, 89-96 https://doi.org/10.1016/S0168-9452(00)00272-7
- Olmos, E., J. R. Martinez-Solano, A. Piqueras and E. Hellin. 2003. Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). J. Exp. Bot. 54, 291-301 https://doi.org/10.1093/jxb/54.381.291
- Ouariti, O., N. Boussama, M. Zarrouk, A. Cherif and M. H. Ghorbal. 1997. Cadmium- and copper-induced changes in tomato membrane lipids. Phytochemistry 45, 1343-1350 https://doi.org/10.1016/S0031-9422(97)00159-3
- Ouzounidou, G. 1994. Root growth and pigment composition in relationship to element uptake in Silene compacta plants treated with copper. J. Plant Nutr. 17, 933-943 https://doi.org/10.1080/01904169409364778
- Pankovic, D., M. Plesnicar, J. Arsenijevic-Maksimovic, N. Petrovic, Z. Sakac and R. Kastori. 2000. Effects of nitrogen nutrition on phosynthesis in Cd-treated sunflower plants. Ann. Botany 86, 841-847 https://doi.org/10.1006/anbo.2000.1250
- Pierce, J. 1983. Determinants of substrate specificity and the role of metal in the reaction of ribulose bisphosphate carboxylase/oxygenase. Plant Physiol. 81, 934-945 https://doi.org/10.1104/pp.81.3.934
- Portis, A. R. Jr. 1990. Rubisco activase. Biochim. Biophys Acta 1015, 15-28 https://doi.org/10.1016/0005-2728(90)90211-L
- Portis, A. R. Jr. 2003. Rubisco activase: Rubisco's catalytic chaperone. Photosynthesis Research 75, 11-27 https://doi.org/10.1023/A:1022458108678
- Prasad, M. N. V. 1995. Cadmium toxity and tolerance in vascular plants. Envir. Exp. Bot. 35, 525-545 https://doi.org/10.1016/0098-8472(95)00024-0
- Racker, E. 1962. Ribulose diphosphate carboxylase from spinach leaves. Methods Enzymol. 5, 266-270 https://doi.org/10.1016/S0076-6879(62)05216-7
- Reddy, A. S. N. 2001. Calcium: silver bullet in signaling. Plant Science 160, 381-404 https://doi.org/10.1016/S0168-9452(00)00386-1
- Robinson, S. P. and A. R. Portis Jr. 1989. Adenosine triphosphate hydrolysis by purified rubisco activase. Arch. Biochem. Biophys. 268, 93-99 https://doi.org/10.1016/0003-9861(89)90568-7
- Robinson, S. P., V. J. Streusand, J. M. Chatrield and A. R. Portis Jr. 1988. Purification and assay of rubisco activase from leaves. Plant Physiol. 88, 1008-1014 https://doi.org/10.1104/pp.88.4.1008
-
Roh, K. S., J. S. Kim, B. W. Kim, J. S. Song, H. S. Chung and S. D. Song. 1997. Decrease in carbamylation of rubisco by high
$CO_2$ concentration is due to decrease of rubisco activase in kidney bean. J. Plant Biology 40, 73-79 https://doi.org/10.1007/BF03030237 -
Roh, K. S., J. K. Kim, S. D. Song, H. S. Chung and J. S. Song. 1996. Decrease of the activation and carbamylation of rubisco by high
$CO_2$ in kidney bean. Kor. J. Biotechnol. Bioeng. 11, 295-302 - Ruan, J., J. Ma, Y. Shi and W. Han. 2004. The impact of pH and calcium on the uptake of fluoride by tea plants (Camellia sinensis 1.). Ann. Botany 93, 97-105 https://doi.org/10.1093/aob/mch010
- Salvucci, M E. 1989. Regulation of rubisco activity in vivo. Physiol. Plant. 77, 164-171 https://doi.org/10.1111/j.1399-3054.1989.tb05993.x
- Salvucci, M. E., A. R. Portis Jr. and W. J. Ogren. 1985. A soluble chloroplast protein catalyzes ribulose-bisphosphate carboxylase/oxygenase activation in vivo. Photosynthesis Research 7, 191-203
- Sandalio, J. M., H. C. Dalurzo, M. Gomez, M C. Romero-Puertas and J. A Del Rio. 2001. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot. 52, 2115-2126
- Sanders, D., C. Brownlee and J. F. Harper. 1999. Communicating with calcium. Plant Cell 11, 691-706 https://doi.org/10.1105/tpc.11.4.691
- Shah, K. and R. S. Dubey. 1995. Effect of cadmium on RNA level as well as activity and molecular forms of ribonuclease in growing rice seedlings. Plant Physiol. Biochem. 33, 577-584
- Sharma, S. S., S. Kaul, A Metwally, K. C. Goyal, J. Finkemeier and K-J Dietz. 2004. Cadmium toxicity to barley (Hordeum vulgare) as affected by varying Fe nutritional status. Plant Science 166, 1287-1295 https://doi.org/10.1016/j.plantsci.2004.01.006
- Siedlecka, A. and Z. Krupa. 1996. Interaction between cadmium and iron and its effects on photosynthetic capacity of primary leaves of Phaseolus vulgaris. Plant Physiol. Biochem. 34, 833-841
-
Siedlecka, A, Z. Krupa, G. Samuelson, G. Oquist and P. Gardestriin. 1997. Primary carbon metabolism in Phaseolus vulgaris plants under
$Cd^{2+}$ /Fe interaction. Plant Physiol. Biochem. 35, 951-957. - Snedden, W. A and H. Fromm. 1998. Calmodulin, calmodulinrelated proteins and plant responses to the environment. Trends Plant Sci. 3, 299-304 https://doi.org/10.1016/S1360-1385(98)01284-9
-
Stiborova, M 1988.
$Cd^{2+}$ ions affect the quaternary structure of ribulose-1,5-bisphosphate carboxylase from barley leaves. Biochemia Physiologia Pflanzen 183, 371-378. https://doi.org/10.1016/S0015-3796(88)80045-3 - Stiborova, M, M. Ditrichova and A Brezinona. 1987. Effect of heavy metal on growth and biochemical characteristics of photosynthesis of barley and maize seedlings. Biologica Plantarum 29, 453-469 https://doi.org/10.1007/BF02882221
-
Stobart, A. K., W. T. Griffiths, J. Ameen-Bukhari and R. P. Sherwood. 1985. The effect of
$Cd^{2+}$ on the biosynthesis of chlorophyll in leaves of barley. Physiol. Plant. 63, 293-298. https://doi.org/10.1111/j.1399-3054.1985.tb04268.x - Streusand, V. J. and A. R. Portis Jr. 1987. Rubisco activase mediates ATP-dependent activation of ribulose bisphosphate carboxylase. Plant Physiol. 85, 152-154 https://doi.org/10.1104/pp.85.1.152
- Van Assche, F. and H. Clijsters. 1990. Effects of metals in enzyme activity in plants. Plant Cell Environ. 13, 195-206 https://doi.org/10.1111/j.1365-3040.1990.tb01304.x
- Vinit-Dunand, F., D. Epron, B. Alaoui-Sosse and P. M. Badol. 2000. Effects of copper on growth and on photosynthesis in cucumber plants. Plant Science 163, 53-58 https://doi.org/10.1016/S0168-9452(02)00060-2
- Wang, Z. Y., G. W. Snyder, B. D. Esau, Portis, A. R. Jr. and W. L. Ogren. 1992. Species-dependent variation in the interaction of substrate-bound ribulose-1,5-bisphosphate carboxylase/oxygenase and rubisco activase. Plant Physiol. 100, 1858-1862 https://doi.org/10.1104/pp.100.4.1858
- White, P. J. 2000. Calcium channels in higher plants. Biochim. Biaphy. Acta 1465, 171-189 https://doi.org/10.1016/S0005-2736(00)00137-1
- White, P. J. 2001 The pathways of calcium movement to the xylem. J. Exp. Bot. 52, 891-899 https://doi.org/10.1093/jexbot/52.358.891
- White, P. J. and M. R. Broadley. 2003. Calcium in plants. Ann. Botany 92, 487-511 https://doi.org/10.1093/aob/mcg164
- Woolhouse, H. W. 1983. Toxicity and tolerance of plants to heavy metals. Encycl. Plant Physiol. 12, 246-300
- Zenk, M. H. 1996. Heavy metal detoxification in higher plants. Rev. Gene 179, 21-30
Cited by
- Influence of Ammonium against Cadmium Effect on in vitro Growth, Chlorophyll and RubiscojRubisco Activase in Tobacco Leaves. vol.18, pp.5, 2008, https://doi.org/10.5352/JLS.2008.18.5.660
- Effects of Ethylsalicylic Acid on Growth and Rubisco/Rubisco Activase in Tobacco Plant Cultured under Cadmium Treatment in vitro vol.24, pp.5, 2014, https://doi.org/10.5352/JLS.2014.24.5.558
- The Reverse Effect of Salicylic Acid on Cd-induced Growth, Chlorophyll, and Rubisco/Rubisco Activase in Tobacco vol.22, pp.6, 2012, https://doi.org/10.5352/JLS.2012.22.6.778
- Physiological Response and Cadmium Accumulation of MuS1 Transgenic Tobacco Exposed to High Concentration of Cd in Soil: Implication to Phytoremediation of Metal Contaminated Soil vol.46, pp.1, 2013, https://doi.org/10.7745/KJSSF.2013.46.1.058
- Influence of Nitrate Against Effect of Cadmium on Growth and Rubisco in Seedling of Tobacco. vol.17, pp.5, 2007, https://doi.org/10.5352/JLS.2007.17.5.646
- Influence of exogenous application of glutathione on rubisco and rubisco activase in heavy metal-stressed tobacco plant grown in vitro vol.21, pp.1, 2014, https://doi.org/10.1016/j.sjbs.2013.06.002
- Influence of Nitrate on Growth, Chlorophyll Content, Content and Activity of Rubisco and Rubisco Activase of Tobacco Plant Treated with Cadmium in vitro vol.20, pp.11, 2010, https://doi.org/10.5352/JLS.2010.20.11.1667