• Title/Summary/Keyword: photosynthesis

Search Result 1,185, Processing Time 0.036 seconds

Studies on Physiological Responces of Some Horticultural Plants to Sulfur Dioxide and Reduction of Its Injury (몇가지 원예작물(園藝作物)에 미치는 아황산(亞黃酸)가스의 피해(被害) 및 피해경감(被害輕減)에 관(關)한 연구(硏究))

  • Lee, Jae Chang;Ku, Ja Hyeong
    • Korean Journal of Agricultural Science
    • /
    • v.8 no.2
    • /
    • pp.152-163
    • /
    • 1981
  • Changes of ethylene production, photosynthesis, respiration and sulfur content of leaves were investigated in some horticultural plants injured by $SO_2$ exposure. Concurrently the effects of $AgNO_3$, succinic acid- 2, 2-dimethylhydrazide (daminozide) and benomyl spray on reduction of $SO_2$ damage in the plants were examined. 1. The amount of ethylene production was significantly different among species of plants and showed higher and earlier peak at 5 ppm $SO_2$ compared with 2.5 ppm $SO_2$ exposure. 2. $AgNO_3$ sprayed on leaves significantly inhibited ethylene production in Cedrus deodara and Forsythia koreana. And it reduced the defoliation of F. koreana occured by $SO_2$ damage. 3. Photosynthetic rate of Helianthus annuus was decreased markedly after 4 -hr exposures to 5 ppm SO, but it was not reduced during exposure to 2.5 ppm $SO_2$. F. koreana showed a little changes in photosynthetic rate after abrupt reduction at the early stage of $SO_2$ exposure regardless of $SO_2$ concentration. 4. The rate of respiration was increased or decreased markedly in propotion to concentration and hours of $SO_2$ exposure compared with control. Daminozide and benomyl showed a little effects on reduction of respiratory changes occured by $SO_2$ damage in C. deodara and H. annuus but there was no effect when $AgNO_3$ was sprayed on C. deodara. 5. Sulfur content of leaves was increased more rapidly at 5 ppm than at 2.5 ppm $SO_2$ exposure. But the injury in 5 ppm $SO_2$ exposure was found out at low sulfur content compared with 2.5 ppm $SO_2$ exposure.

  • PDF

Differences on Growth, Photosynthesis and Pigment Contents of Open-pollinated Pinus densiflora Families Under Elevated Temperature and Drought (온도 증가와 건조 스트레스에 따른 소나무 풍매차대묘의 가계간 생장, 광합성 및 광색소 함량 차이)

  • Kim, Gil Nam;Han, Sim-Hee;Park, Gwan Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.285-296
    • /
    • 2014
  • The impacts of high temperature and drought were studied on the seedlings of three families (superiorgangwon74, intermediate-gangwon77 and inferior-gangwon132) of P. densiflora which had been selected by the based on the growth indexes of 32-year-old. The seedlings were grown in controlled-environment growth chambers with combinations of four temperatures ($-3^{\circ}C$, $0^{\circ}C$, $+3^{\circ}C$ $+6^{\circ}C$; based on the monthly average for 30 years in Korea) and two water conditions (control, drought). The growth performance, photosynthetic parameters and photosynthetic pigment contents were measured at every 30 days under four temperatures and drought condition, and the end of each treatment. The superior family showed higher relative diameter at root collar growth rate and the dry weight than intermediate and inferior family in all treatments. Under elevated temperature and drought condition, growth rate was decreased, and seedlings showed lower growth rate than that of control in three families under low temperature. Photosynthetic rate, stomatal conductance and transpiration rate of three families decreased with the increase of temperature and drought condition, and that of seedlings under low temperature was lower than control. But under elevated temperature and drought condition, water use efficiency increased in three families. Photosynthetic pigment contents of leaves decreased under the increase of temperature and drought condition, but chlorophyll a/b ratio increased with the increase of temperature and drought condition in three families. The superior family showed higher total chlorophyll content than intermediate and inferior family in all treatments. In conclusion, P. densiflora is under changed temperature and drought condition, growth was decreased, seedlings more affected in elevated temperature than that of decreased temperature. The increase in monthly average temperature in Korea of more than $6^{\circ}C$, P. densiflora seedling growth in depending on region may decrease. In this study, the superior family(gangwon74) showed more excellent growth and physiological responses than intermediate (gangwon77) and inferior(gangwon132) family under changes temperature and drought.

Change of photosynthetic efficiency and yield by low light intensity on ripening stage in japonica rice (등숙기의 차광 처리에 의한 광합성능 및 쌀 수량 변화)

  • Lee, Min Hee;Kang, Shin-Gu;Sang, Wan-Gyu;Ku, Bon-Il;Kim, Young-Doo;Park, Hong-Kyu;Lee, Jeom-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.327-334
    • /
    • 2014
  • Light intensity is one of the most important requirements for plant growth, affecting growth, development, survival, and crop productivity. Sunlight is the main energy source on Earth which is energy used by photosynthesis to convert light energy to chemical energy. In this study, the light use efficiency and photosynthetic characteristics of high-quality rice cultivars were evaluated after shading on ripening stage. For the study, we treated of three levels of shade (0, 50 and 70%) on rice at ripening stage and two levels of nitrogen (9 and 18 kg/10a) used three high yielding rice cultivars, such as Boramchan, Hopum, and Honong. The shade was given for the respective plots from heading up to harvesting. We were performed to determine growth survey, SPAD and chlorophyll fluorescence every 10 days interval after shading on ripening stage. At harvest stage, grain yield and yield components were determined. Results of analysis of the results representing the maximum photosynthetic efficiency of PSII, Fv/Fm, and SPAD were decreased by depending on the time at full sunlight. But shade treatments were not changed and a significant difference among cultivars did not appear. Compared with the full sunlight, shade treatments significantly delayed ripening rate and decreased rice quality of cultivated rice. Therefore, rice yield, can be reduced in proportion to the shading density is apparent, the rate of decrease was not observed difference between varieties, when protected from light 70%, and decreased to less than 50%. The adverse effects of low light intensity on the yield and yield components were not able to significantly minimize by the nitrogen level.

Difference in Freshness of Soybean Sprouts as Affected by $\textrm{CO}_2$ Concentration and Postharvest Storage Temperature (콩나물 재배과정 중 기체 조성과 수확 후 저장온도에 따른 선도 변화)

  • 배경근;남승우;김경남;황영현
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.3
    • /
    • pp.172-178
    • /
    • 2004
  • When soybean sprouts aye grown in the closed condition (where the ratio of $\textrm{O}_2$ and $\textrm{CO}_2$ is 7 : 3), amount of $\textrm{CO}_2$ is increased and $\textrm{O}_2$ is decreased with the passage of time. At the same time, the amount of ethylene is automatically increased. By increasing the concentration of ethylene gas up to 0.5-1.0 ppm in the growth room, the length of sprouts was restricted to 6-7 cm and the thickness of sprouts was increased to 2.70$\pm$0.30 mm. The production of good quality sprouts which were fat and short was possible without application of any growth regulators such as indole-3-acetic acid known to have accumulation problem in humane body. To maintain the freshness during the transportation and prevent sprouts from rotting and bad smell at market, cold storage at 2-$5^{\circ}$ and airtightness which will restrict photosynthesis and respiration (higher than $10^{\circ}$) are needed. The freshness of sprouts is depended on the increase of $\textrm{CO}_2$ and the depletion of $\textrm{O}_2$ in the package. When the sprouts were stored below 1$0^{\circ}C$ (preferably below 8$^{\circ}C$), the concentration of $\textrm{CO}_2$ in the package remained below 30% for more than 60 hours, which was possible to keep sprouts in freshness without any offensive odor, But sprouts were maintained at $13^{\circ}$ for more than 25 hours, the concentration of $\textrm{CO}_2$ increased over 30% and produced an offensive odor. The little amount of $\textrm{O}_2$ gas was existing for 30 hours at $5^{\circ}$ but it was disappeared completely within 7 hours over $10^{\circ}$ and the sprouts became rot and produced severe offensive odor.

Studies on Reserved Carbohydrates and NEL ( Net energy Lactation ) in Corn and Sorghum I. Synthesis and Accumulation Pattern of Fructosan, Mono-and Disaccharose (옥수수 및 Sorghum에 있어서 탄수화물과 NEL 축적에 관한 연구. I. Fructosan , Mono 및 Disaccharose의 합성 및 축적형태)

  • ;G. Voigtlaender
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.5 no.1
    • /
    • pp.45-52
    • /
    • 1985
  • Phytotron and field experiments were conducted to determine the influence of morphological development and environmental temperature on synthesis, translocation and accumulation behaviour of Fructosan, Monoand Disaccharose in corn cv. Blizzard and fodder sorghum cv. Sioux and Pioneer 931 at Munich technical university. Sorghum and maize plants were grown for 42 days at 4 temperature regimes (30/25, 25/20, 28/18 and 28/8 dog C) and mid-summer sunlight over 13-h days. The obtained results are summarized as follows: 1 Non-structural carbohydrates in maize and sorghum were accumulated mainly as Mono- and Disaccharose. The concentrations of Mono- and Disaccharose were increased markedly after differentiation of growing points and shown at early milk stage the highest contents with 27.8-29.1% and 16.8-20.4% for maizeand sorghums respectively. 2. Non-structural carbohydrates were accumulated mainly in stalk. However, during the late maturity the most of Mono- and Disaccharose were translocated into grain and reserved as starch. The increase of starch was associated with decrease of total non-structural carbohydrates. 3. Fructosan synthesis was not affected by morphological changes and environmental factors, which shows a value of 1.5-2.5% in whole stage of maize and sorghum. 4. Sorghum and maize plants were shown to have a great photosynthetic rates to high temperature. Reserved Mono- and Diaaccharose were, however, declined when temperature exceeded 30 dog C. Under cold stress at l8/8 deg C non-structural carbohydrates were not translocated and also were accumulated in leaves too much that cause to restrict of photosynthesis. 5. Net Energy Lactation (NEL) of sorghum and maize were directly associated with synthetic rates of non-structural carbohydrates, especially Mono- and Disaccharose. The highest values of NEL were found at physiological maturity stage with 6.6- 6.9 MJ and 5.7-6.0 MJ-NEL/kg for maize and sorghum respectively.

  • PDF

Effects of Depth and Duration of Water-logging on Growth and Yield at Transplanting and Flowering Stage in Pepper (Capsicum annuum L.) (고추(Capsicum annuum L.)의 이식기(移植期) 및 개화기(開化期) 침수처리(浸水處理) 따른 생육반응(生育反應))

  • Guh, Ja-Ock;Kuk, Yong-In
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.4
    • /
    • pp.425-433
    • /
    • 1996
  • Pepper plants were water-logged at 0, 5, 10 and 15 cm at transplanting and flowering stages under the condition of greenhouse. Treatment of water-logging times were 6, 12, 24, 48 and 120 hours. The results obtained are summarized as follows. At the transplanting stage, plant height, number of leaves, shoot and root fresh weight decreased by water-logging at 0cm for 24 hours and at 5cm or more for 6 hours. Number of fallen leaf was negligible by 12 hours water-logging at 0cm, however, its increased by more increased the water-logging depth and time. Diffusion resistance and chlorophyll content of leaf, and root activity decreased at more than 24 hours of water-logging regardless of the water-logging depth treatments. Photosynthesis and respiration rate diminished by increased the water-logging depth at 120 hours water-logging treatment. Plant diseases, mainly anthracnose(Colletotrichum) occurred in proportion to increase the depth and time of water-logging. It was not possible to control the diseases by fungicides. At the treatment of foliar spray of urea for recovery to water-logging damage, the efficiency was not found on plant height, but the number of leaves. Number of fruit and weight of fruit per plant showed no difference from no water-logging to 24 hours water-logging at 0cm, but its decreased that more than 24 hours water-logging at 0cm and more than 6 hours water-logging at 5cm or more. The averaged weight of a fruit on survival plants increased by more hours and deeper water-logging. There was positive correlation between all the investigated characteristics of growth and yield. There was, however, negative correlation between the characteristics and diffusion resistance of leaf stomata. The correlation between number of fallen leaf and averaged weight of a fruit was not significant. At flowering stage, number of fruit and weight of fruit per plant showed a similar tendency to no water-logging and by 12 hours water-logging at 0cm and 5cm, but significantly decreased at more than 24 hours water-logging from 0 to 5cm, and more than 6 hours water-logging at 10cm or more. The averaged weight of a fruit on survival plants increased by more hours and deeper water-logging except for 120 hours water-logging at all water depths.

  • PDF

Effects of Depth and Duration of Water-logging on Growth and Yield at Germination and Seedling Stage in Tomato(Lycopersicon esculentum Mill.) (토마토(Lycopersicon esculentum Mill.)의 발아기(發芽期) 및 유묘기(幼苗期) 침수(浸水) 처리(處理)에 따른 생육(生育) 반응(反應))

  • Guh, Ja-Ock;Roh, Sang-Eun;Kuk, Yong-In;Chon, Sang-Uk;Lee, Young-Man;Oh, Yun-Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.4
    • /
    • pp.406-418
    • /
    • 1996
  • Tomatoes are water logged differently 0, 5, 10 and 15 cm, according to the developing stages such as germination and seedling stage under the condition of greenhouse. Along with this, they are treated according to the time condition such as 6, 12, 24, 48 and 120 hours. The results obtained are summarized as follows. 1. The result at germination stage Remarkable germination failure was observed when tomatoes were water-logged for 25 to 27 hours in the depth of 0 to 5 cm. Plant height recovered within 24 hours regardless of the water-logging depths. In the case of leaves, the recoverable time limit became shorter gradually in accordance with the increase of the water-logging depth. The decrease of the fresh weight showed acute response in the shoot rather than the root. It recovered with the 24 hours of water logging. Significant correlation was observed in all characteristics of plant height, number of leaves, fresh weight and germination rates according to the depth of water-logging. 2. The result at seedling stage Plant height recovered within the 24 hours of water-logging in the depth of 0 cm. On the deeper level, there was significant decrease regardless of time. With regard to the number of leaves, there was recovery up to 120 hours in the depth of 0 cm, up to 24 hours in the depth of 5 cm. There was, however, significant decrease when done for more than 6 hours on the deeper level. Growth of the shoot displayed the same tendency as in plant height and number of leave. The length of the longest root could be maintained by 80% in the water-logging of 0 cm compared with control. However in depth of 5 cm or more, it could not be maintained by the 120 hours water-logging. Root activity became conspicuously diminished with the logging over 0 cm. Respiration showed conspicuous decrease by the depth of 5 cm as a turning point. On the other hand, photosynthesis became decreased linearly by the depth of water-logging. Chlorophyll content displayed gradual decrease up to 48 hours, but conspicuously decreased up to 120 hours according to the varying depth of water-logging. Dieases tended to increase according to the depth and hours of water-logging. Diseases would be prevented by dint of insecticide, but there was no effect of fertilization. Weight and number of fruit per plant displayed gradual decrease as the depth and hours of water-logging became increased. Average weight of a fruit became increased. There was no statisticaly reciprocal effects between the depth and hours of water-logging. There was significant positive correlation among all the investigated characteristics, such as traits of growth and yield.

  • PDF

Effects of Daylength Extension by Red Light in Strawberry Cultivation (적색광에 의한 딸기재배의 일장연장 효과)

  • Hong, Seung-Chang;Kim, Min-Kyeong;Kim, Myung-Hyun;Choe, Soon-Kun;Eo, Jin-Woo;Jung, Goo-Bok;So, Kyu-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.358-363
    • /
    • 2014
  • BACKGROUND: Many strawberry growers are utilizing daylength extension by using incandescent bulb or fluorescent lamp to break dormancy of strawberry induced by low temperature and short day conditions. Conventional incandescent bulb and fluorescent lamp consume a lot of electricity and have short longevity. Red light known for most efficient wavelength for daylength extension light of short-day plant and long-day plant. This study was conducted to verify the effects of red light to enhance growth and to increase production of strawberry (Fragaria ${\times}$ ananassa Duch. cvs. "Seolhyang") METHODS AND RESULTS: Three red light (660nm) of 0.70, 0.87, and $1.05{\mu}mol/m^2/s$ (PAR) and conventional incandescent bulb of 40 Lux were treated respectively under the pot experiment. All treatment irradiated from 18:00 to 24:00 for 6 hours. Red light treatment tend to increase leaf stem number, flower stem number, weight of flower stem, crown weight, root weight, and leaf area of strawberry then incandescent bulb treatment. In field experiment, red light of $0.7{\mu}mol/m^2/s$ (PAR) and conventional incandescent bulb of 40 Lux were irradiated respectively. Field experiment showed that the leaf number, leaf weight, and crown weight of strawberry increased than those of incandescent bulb control with red LED of $0.7{\mu}mol/m^2/s$ (PAR). Red LED treatment increased the fruit number over 15g than incandescent bulb. Furthermore, red LED treatment decreased fruit number below 15g of strawberry than incandescent bulb treatment. Therefore, We believed that red LED treatment increased marketable fruit number by increment of weight of each fruit. Consequently, marketable fruit number, fruit weight, and fruit production of strawberry were increased than those of incandescent bulb by 5 %, 2.9 %, and 8.5 % respectively, but not showed significantly differences. CONCLUSION: These results presumably due to directly enhanced photosynthesis of strawberry leaves and activated action of Pfr phytochrome form by red light. In conclusion, red LED of 660nm could be used for daylength extension light source to enhance production of strawberry.

Ecosysteme de I′Etang de Berre (Mediterranee nord-occidentale) : Caracteres Generales Physiques, Chimiques et Biologiques

  • Kim, Ki-Tai
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.2
    • /
    • pp.247-258
    • /
    • 2004
  • Climatological, hydrological and planktonical research studies, measurements of primary production and photosynthetic efficiency from December 1976 to December 1978 have been carried out in two brackish lakes: Lake Etang de Berre and Lake Etang de Vaine located in the French Mediterranean coast, in the region of Carry-le-Rouet located on the north-west Mediterranean near Marseilles, and in fresh water inflows from 4 Rivers (Touloubre, Durance, Arc, Durancole) to Lake Etang de Berre. Physico-chemical parameters were measured for this study: water temperature, salinity, density, pH, alcalinity, dissolved oxygen (% saturation), phosphate, nitrate, nitrite, silicate etc. Diverse biological parameters were also studied: photosynthetic pigments, phaeopigments, specific composition and biomass of phytoplankton, primary pelagic production etc. Climatical factors were studied: air-temperature, solar-radiation, evaporation, direction (including strength) of winds, precipitation and freshwater volume of the four rivers. The changes in Lake ‘Etang de Berre’ ecosystem depend on the quality of the water in the Durance River, and on the effects of seawater near the entrance of the Caronte Canal. The water quality of the lake varies horizontally and vertically as a result of atmospheric phenomena, maritime currents and tides. The distribution of water temperatures is generally heterogeneous. Southeasterly winds and the Northeasterly Mistral wind are important in the origins of circulated and mixed water masses. These winds are both frequent and strong. They have, as a result, a great effect on the water environment of Lake Etang de Berre. In theory, the annual precipitation in this region is well over eight times the water mass of the lake. The water of the Durance River flows into Lake Etang de Berre through the EDF Canal, amounting to 90% of the precipitation. However, reduction of rainfall in dry seasons has a serious effect on the hydrological characteristics of the lake. The temperature in the winter is partially caused by the low temperature of fresh water, particularly that of the Durance River. The hydrological season of fresh and brackish water is about one month ahead of the hydrological season of sea water in its vicinity. The salinity of Lake Etang de Berre runs approximately 3$\textperthousand$, except at lower levels and near the entrance to the Caronte Canal. However, when the volume of the Durance River water is reduced in the summer and fall, the salinity rises to 15$\textperthousand$. In the lake, the ratio of fresh water to sea water is six to one (6:1). The large quantities of seston conveyed by rivers, particularly the Durance diversion, strongly reduce the transparency in the brackish waters. Although the amount of sunshine is also notable, transparency is slight because of the large amount of seston, carried chiefly by Tripton in the fresh water of the Durance River. Therefore, photosynthesis generally occurs only in the surface layer. The transparency progressively increases from freshwater to open seawater, as mineral particles sink to the bottom (about 1.7kg $m^{-2}a^{-1}$ on the average in brackish lakes). The concentration of dissolved oxygen and the rate of oxygen saturation in seawater (Carry-le-Rouet) ranged from 5.0 to 6.0 $m\ell$ㆍ.$1^{-1}$, and from 95 to 105%, respectively. The amount of dissolved oxygen in Etang de Berre oscillated between 2.9 and 268.3%. The monographs of phosphate, nitrate, nitrite and silicate were published as a part of a study on the ecology of phytoplankton in these environments. Horizontal and vertical distributions of these nutriments were studied in detail. The recent diversion of the Durance River into Lake Etang de Berre has effected a fundamental change in this formerly marine environment, which has had a great impact in its plankton populations. A total of 182 taxa were identified, including 111 Bacillariophyceae, 44 Chlorophyceae, and 15 Cyanophyceae. The most abundant species are small freshwater algae, mainly Chlorophyceae. The average density is about $10^{8}$ cells $1^{-1}$ in Lake Etang de Berre, and about double that amount in Lake Etang de Vaine. Differences in phytoplankton abundance and composition at the various stations or at various depths are slight. Cell biovolume V (equivalent to true biomass), plasma volume VP (‘useful’ biomass) and, simultaneously. the cell surface area S and S/V ratio through the measurement of cell dimensions were computed as the parameters of phytoplankton productivity and metabolism. Pigment concentrations are generally very high on account of phytoplankton blooms by Cyanophyceae, Chlorophyceae and Cryptophyceae. On the other hand, in freshwaters and marine waters, pigment concentrations are comparatively low and stable, showing slight annual variation. The variations of ATP concentration were closely related to those of chlorophyll a and phytoplankton blooms only in marine waters. The carbon uptake rates ranged between 38 and 1091 mg$Cm^{-2}d^{-1}$, with an average surface value of 256 mg; water-column carbon-uptake rates ranged between 240 and 2310 mg$Cm^{-2}d^{-1}$, with an average of 810, representing 290 mg$Cm^{-2}$, per year 45 000 tons per year of photosynthetized carbon for the whole lake. Gross photosynthetic production measured by the method of Ryther was studied over a 2-year period. The values obtained from marine water(Carry-le-Rouet) ranged from 23 to 2 337 mg$Cm^{-2}d^{-1}$, with a weighted average of 319, representing about 110 gCm$^{-2}$ per year. The values in brakish water (Etang de Berre) ranged from 14 to 1778 mg$Cm^{-2}d^{-1}$, with a weighted average of 682, representing 250 mg$Cm^{-2}$ per year and 38 400 tons per year of photosynthesized carbon for the whole lake.

Study of Nutrient Uptake and Physiological Characteristics of Rice by $^{15}N$ and Purified Si Fertilization Level in a Transplanted Pot Experiment (중질소와 순수규산 시비수준이 벼의 양분흡수 및 생리적 특성에 미치는 영향)

  • Cho Young-Son;Jeon Won-Tae;Park Chang-Young;Park Ki-Do;Kang Ui-Gum
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.5
    • /
    • pp.408-419
    • /
    • 2006
  • A pot experiment was conducted for two years to evaluate the effects of purified Si fertilization combined with $^{15}N$ on the nutrient uptake, plant growth characteristics, and photosynthetic characteristics of rice in water melon cultivated soil. In 2002, plant height was positively affected at 25 DAT (Day After Transplanting) by Si fertilization in 100%N treatment. However, in 2003, plant height at 25 DAT was negatively affected by Si fertilization in low N level but it was reversed in high N level with initial increase of plant height. Tiller number per pot was positively affected by N and Si fertilization level, especially for high N fertilized treatment. Leaf color was positively affected by Si fertilizatlon in no N fertilized pots, however, Si was not effected in 50%N and 100%N fertilized treatments. N harvest index (NHI) increased with increased Si fertilization in no N plots, however it decreased with increasing of N fertilization level. Nitrogen use efficiency (NUE) decreased with increasing of fertilized N but Si fertilization increased NUE in 50%N plots, however, it was not different by the Si fertilization level in 100%N plots. In 50%N+200%Si plots, NUE was greatest with 130 and shoot N content was $16.2g-N/m^{2}$. N content ($g/m^{2}$) in rice plant increased with increasing Si fertilization in no N plots at panicle initiation stage, 50 and 100%N plots at heading stage and all N treatment at harvesting time. This was mostly more efficient in late growth stage than early growth stage. The concentration (%) of P and K increased with increasing N fertilization level at heading and harvesting but it was not significantly different by the Si fertilization treatment except a little decreasing with increasing Si fertilization level at heading. Potassium content was also not significantly related with N fertilization level except increasing with Si fertilization level at panicle initiation stage. Plant Ca content (%) decreased with increasing of Si fertilization at heading stage and Si fertilization increased Ca content at panicle initiation stage and heading stage and it increased with increasing of Si fertilization level. Photosynthetic activity was not directly related with Si fertilization amount, however, Fluorescent factors, Fv'/Fm' and PsII, were positively affected by Si fertilization level. In conclusion, N fertilization in Si 200% fertilized condition should be reduced by about 50% level of recommended N fertilization for rice cropping in green-house water-melon cultivated paddy field. However, improvement of Ps by Si fertilization could not be attributed to Ps activity in the same leaf area but because of increased total leaf area per pot improved fluorescent characteristics.