Browse > Article

Study of Nutrient Uptake and Physiological Characteristics of Rice by $^{15}N$ and Purified Si Fertilization Level in a Transplanted Pot Experiment  

Cho Young-Son (National Institute of Crop Science, RDA.)
Jeon Won-Tae (National Institute of Crop Science, RDA.)
Park Chang-Young (Yeongnam Agricultural Research Institute, RDA.)
Park Ki-Do (Yeongnam Agricultural Research Institute, RDA.)
Kang Ui-Gum (Yeongnam Agricultural Research Institute, RDA.)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.51, no.5, 2006 , pp. 408-419 More about this Journal
Abstract
A pot experiment was conducted for two years to evaluate the effects of purified Si fertilization combined with $^{15}N$ on the nutrient uptake, plant growth characteristics, and photosynthetic characteristics of rice in water melon cultivated soil. In 2002, plant height was positively affected at 25 DAT (Day After Transplanting) by Si fertilization in 100%N treatment. However, in 2003, plant height at 25 DAT was negatively affected by Si fertilization in low N level but it was reversed in high N level with initial increase of plant height. Tiller number per pot was positively affected by N and Si fertilization level, especially for high N fertilized treatment. Leaf color was positively affected by Si fertilizatlon in no N fertilized pots, however, Si was not effected in 50%N and 100%N fertilized treatments. N harvest index (NHI) increased with increased Si fertilization in no N plots, however it decreased with increasing of N fertilization level. Nitrogen use efficiency (NUE) decreased with increasing of fertilized N but Si fertilization increased NUE in 50%N plots, however, it was not different by the Si fertilization level in 100%N plots. In 50%N+200%Si plots, NUE was greatest with 130 and shoot N content was $16.2g-N/m^{2}$. N content ($g/m^{2}$) in rice plant increased with increasing Si fertilization in no N plots at panicle initiation stage, 50 and 100%N plots at heading stage and all N treatment at harvesting time. This was mostly more efficient in late growth stage than early growth stage. The concentration (%) of P and K increased with increasing N fertilization level at heading and harvesting but it was not significantly different by the Si fertilization treatment except a little decreasing with increasing Si fertilization level at heading. Potassium content was also not significantly related with N fertilization level except increasing with Si fertilization level at panicle initiation stage. Plant Ca content (%) decreased with increasing of Si fertilization at heading stage and Si fertilization increased Ca content at panicle initiation stage and heading stage and it increased with increasing of Si fertilization level. Photosynthetic activity was not directly related with Si fertilization amount, however, Fluorescent factors, Fv'/Fm' and PsII, were positively affected by Si fertilization level. In conclusion, N fertilization in Si 200% fertilized condition should be reduced by about 50% level of recommended N fertilization for rice cropping in green-house water-melon cultivated paddy field. However, improvement of Ps by Si fertilization could not be attributed to Ps activity in the same leaf area but because of increased total leaf area per pot improved fluorescent characteristics.
Keywords
grain quality; N; Ps (Photosynthesis); Fluorescent; rice; silicate fertilizer (SF);
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Chun, A. and H.J. Lee. 2006. Absorption and partition of 15N-labeled fertilizer in rice under different nitrogen application time and rate conditions. Korean Journal of Crop Science. 51(1) : 32-40   과학기술학회마을
2 Furubayashi, S., J. Abe, S. Morita, and J. Yamagishi. 2002. The effect of modeling treatment on the growth, yield and bleeding sap rate of soybean (Glicine max) in two years with different precipitation. Bulletin of Kanto Branch of the Japanese Journal of Crop Science 17, 60-61. in Japanese
3 Kang, Y.S. and Y.T. Jung. 2002. Research on agricultural utilization of silicon in Korea : Progress and prospects. Second Silicon in Agriculture Conference. pp. 262-265
4 Takahashi, E., J. Ma, and Y. Miyake. 1990. The possibility of silicon as an essential element for higher plants. Comm. Agric. Food Chem. 2. 99-122
5 Ma, J.F., Y. Miyake, and E. Takahashi. 2001a. Silicon as a beneficial element for crop plants. 2001 ELSEVIER. Studies in Plant Science, 8. Silicon in Agriculture. pp. 17-39
6 Ma, J.F., S. Goto, K. Tarnai, and M. Ichii. 2001b. Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiology. 127(4) : 1773-1780   DOI
7 Cho, Y.S. and T. Kobata. 2002. N top-dressing and rice straw application for low-input cultivation of transplanted rice in Japan. Korean Journal of Crop Science. 47(4) : 273-278
8 Lee, C.S. 1986. Studies on determination of N-fertilizer rates for increasing rice field in paddy soils. Res. Rep. RDA (P.M & U). 28(2) : 6-21
9 Lee, S.K., Yu, J.C, and M. Kohno. 1975. Fate of inorganic nitrogen by addition of silica materials on the fresh soil condition. J. Korean Soc. Soil Sci. Fert. 8(2) : 61-68
10 Fu, D.J., N.C. Paek, J.G. Kim, and B.W. Lee. 2003. Changes in physiological characteristics of barley genotypes under drought stress. Korean Journal of Crop Science. 48(6) : 506-515   과학기술학회마을
11 UTS,http://www.science.uts.edu.au/des/StaffPages/PeterRalph /fluorescence.html
12 Lee, S.G. and B.H Kang. 2001. Effect of overhead flooding stress on photosynthesis and growth in rice. Korean Journal of Crop Science. 46(3) : 209-214   과학기술학회마을
13 Cho Y.S., W.T. Jeon, S.D. Bae, and C.Y. Park, K.D. Park., D.G. Kang., R. Muthukumarasamy. 2006. Determination and effects of Nand Si fertilization levels on grain quality and pests of rice after winter green-house water-melon cropping. Kor. J. Crop Sci. 51(4) : 274-281   과학기술학회마을
14 Kang, Y.S., Y.T. Jung, and R.K. Park. 1981. Investigation on uptake of silica and phosphorous and rice fertilization impediment occured in Yeongnam area under the cool weather of 1980. Korean Journal of Crop Science. 26(3) : 226-232   과학기술학회마을
15 Deren, C.W., L.E. Datnoff., G.H. Snyder, and F.G. Martin. 1994. Silicon concentration, disease response, and yield components of rice genotypes grown on flooded organic Histosols. Crop Sci. 34 : 733-737   DOI   ScienceOn
16 Jang, G.S., S.J. Jung, Y.H. Kim, S.K. Rim, and S.Y. Hong. 2004. Soil testing of regional major crops for web service. 농업과학기술원 완결보고서 272-280