• Title/Summary/Keyword: photosensitization

Search Result 56, Processing Time 0.03 seconds

Bactericidal effect of 461 nm blue light emitting diode on pathogenic bacteria (461nm 청색 LED를 이용한 식중독세균의 살균효과)

  • Do, Jung Sun;Bang, Woo Suk
    • Food Science and Preservation
    • /
    • v.20 no.3
    • /
    • pp.419-423
    • /
    • 2013
  • The objective of this study was to characterize the bactericidal effect of 461nm visible-light LED on three common foodborne bacteria: Escherichia coli O157:H7, Staphylococcus aureus and Vibrio parahaemolyticus. Tests were conducted against pathogen strains that were treated with 461nm LED for 10 h at $15^{\circ}C$. The E. coli (ATCC 43894, ATCC 8739 and ATCC 35150) and the S. aureus (ATCC 27664, ATCC 19095 and ATCC 43300) had average reductions of 2.5, 6.6, 1.5, 2.5 and 2.0 log CFU/mL, respectively, after they were exposed for 10 h to 461nm LED light (p<0.05). In contrast, V. parahaemolyticus (ATCC 43969) had 6 log CFU/mL reductions after it was exposed for 4 h to 461nm LED light. The results showed that both the Gram-positive and Gram-negative bacteria were inactivated with 461nm LED light exposure. Also, the Gram-negative bacteria were more sensitive to the LED treatment than the Gram-positive bacteria. These results show the potential use of 461nm LED as a food preservation and application technology.

Anionic Effect on Photocatalytic Decomposition of Benzene (벤젠의 광촉매분해반응에 대한 음이온효과)

  • Kim, Young-Hee;Kim, Tae-Gyun;Lee, Chun-Sik
    • Clean Technology
    • /
    • v.6 no.2
    • /
    • pp.107-111
    • /
    • 2000
  • In the photocatalytic degradation of benzene using $TiO_2$ as photocatalyst, anionic effects were investigated. When near UV and visible light was irradiated, the photodegradation of benzene was slightly increased in which $S_2O{_8}^{2-}$ or $NO{_3}^-$ coexisted with $TiO_2$. But $NO{_2}^-$ or $Cl^-$ diminished it remarkably, because these anions scavenged hydroxyl radical. While in the case of UV light irradiation, $S_2O{_8}^{2-}$ and $NO{_3}^-$ enhanced photodegradation of benzene due to photosensitization of these anions, but $NO{_2}^-$ or $Cl^-$ diminished it little.

  • PDF

Oxidative stability of extracts from red ginseng and puffed red ginseng in bulk oil or oil-in-water emulsion matrix

  • Lee, Sang-Jun;Oh, Sumi;Kim, Mi-Ja;Sim, Gun-Sub;Moon, Tae Wha;Lee, JaeHwan
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.320-326
    • /
    • 2018
  • Background: Explosive puffing can induce changes in the chemical, nutritional, and sensory quality of red ginseng. The antioxidant properties of ethanolic extracts of red ginseng and puffed red ginseng were determined in bulk oil and oil-in-water (O/W) emulsions. Methods: Bulk oils were heated at $60^{\circ}C$ and $100^{\circ}C$ and O/W emulsions were treated under riboflavin photosensitization. In vitro antioxidant assays, including 2,2-diphenyl-1-picrylhudrazyl, 2,2'-azinobis-3-ethyl-benzothiazoline-6-sulfonic acid, ferric reducing antioxidant power, total phenolic content, and total flavonoid content, were also performed. Results: The total ginsenoside contents of ethanolic extract from red ginseng and puffed red ginseng were 42.33 mg/g and 49.22 mg/g, respectively. All results from above in vitro antioxidant assays revealed that extracts of puffed red ginseng had significantly higher antioxidant capacities than those of red ginseng (p < 0.05). Generally, extracts of puffed red and red ginseng had high antioxidant properties in riboflavin photosensitized O/W emulsions. However, in bulk oil systems, extracts of puffed red and red ginseng inhibited or accelerated rates of lipid oxidation, depending on treatment temperature and the type of assay used. Conclusion: Although ethanolic extracts of puffed red ginseng showed stronger antioxidant capacities than those of red ginseng when in vitro assays were used, more pro-oxidant properties were observed in bulk oils and O/W emulsions.

PHOTOCHEMISTRY AND PHOTOBIOLOGY OF PSORALENS

  • Shim, Sang-Chul;Jeon, Young Hee;Kim, DongWon;Han, GyuSeok;Yoo, Dong Jin
    • Journal of Photoscience
    • /
    • v.2 no.1
    • /
    • pp.37-45
    • /
    • 1995
  • INTRODUCTION : Psoralens are planar tricyclic furocoumarins present in numerous plants and fungi found throughout the world.' Naturally occurring and synthesized psoralen derivatives(see Figure 1) are photosensitizers of UVA especially from 320 nm to 400 nm, a range at which cellular nucleic acids and proteins are weakly absorbing if any at all. Because of their skinphotosensitizing properties, these compounds have been used in the photochemotherapy of psoriasis and vitiligo. However, undesirable side effects such as carcinoma development in hairless mice as well as possible liver damage from the use of 8-methoxypsoralen(8-MOP) have been reported. The other photobiological effects include inactivation of DNA viruses, killing and mutagenesis of bacteria, inhibition of tumor transmitting capacity of various cells, and hyperpigmentation on human and guinea pig skin. PUVA(psoralen+UVA) photochemotherapy is in fact thousands of years old, having been used in Egypt and India since B.C. 1200-2000. Photochemotherapy for a common disfiguring disease, vitiligo, was practiced in the ancient world by physicians and herbalists who used boiled extracts of the fruits of certain umbelliferous plants, e.g. Ammi majus Linnaeus in Egypt or the leguminous plants, Psoralea corylifolia L. in India. It was first described by Kuske in 19388 that photosensitization of skin by plants was related to the presence of psoralen. He identified natural psoralens in plants as photosensitizers and isolated bergapten(5methoxypsoralen) from the oil of bergamot. The scientific interest in photosensitizing psoralens, however, has grown considerably after the introduction into clinics of the psoralen photochemotherapy for the treatment of psoriasis and of other skin (abbreviation)

  • PDF

Application of Chemical Probes to Detect Superoxide Anion and Singlet Oxygen in Biological Systems during Gamma Irradiation

  • Lee, Min Hee;Cho, Eun Ju;Kim, Ji Hong;Kim, Ji Eun;Chung, Byung Yeoup;Cho, Jae-Young;Lee, Kang-Soo;Kim, Jin-Hong
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.221-225
    • /
    • 2011
  • To detect superoxide anion ($O_2{\cdot}^-$) or singlet oxygen ($^1O_2$) in biological systems during gamma irradiation, specific chemical probes, 4,5-dihydroxy-1,3-benzene disulfonic acid (Tiron) or 2,2,6,6-tetramethyl-piperidine (TEMP), were evaluated. Tiron or TEMP spin adducts was structurally stable in aqueous solution during gamma irradiation up to 500 or 1,000 Gy, respectively. The signal of Tiron semiquinone radical, a spin adduct of Tiron upon reaction with $O_2{\cdot}^-$, was slightly increased by gamma irradiation. This trend was dose-dependently manifested in $O_2$-saturated aqueous solution using nitro blue tetrazolium (NBT), a common probe for both hydrated electron ($e{^-}_{aq}$) and $O_2{\cdot}^-$. In contrast, a spin adduct of TEMP, was never inducible by gamma irradiation, while its signal was substantially enhanced by photosensitization of riboflavin. These results suggest that Tiron and NBT or TEMP could be utilized to detect $O_2{\cdot}^-$ or $^1O_2$ in biological systems during gamma irradiation, although $O_2{\cdot}^-$ or $^1O_2$ are not the main reactive oxygen species produced by water radiolysis.

In Vivo Evaluation of Chondroitin Sulfates from Midduk (Styela clava) and Munggae Tunics (Halocynthia roretzi) as a Cosmetic Material (In vivo에 의한 미색류 콘드로이틴황산의 기능성 화장품 소재로서의 가능성)

  • 김배환;안삼환;최병대;강석중;김영림;이후장;오명주;정태성
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.4
    • /
    • pp.641-645
    • /
    • 2004
  • Crude chondroitin sulfates extracted from midduck tunics (Styela clava) and munggae tunics (Halocynthia roretzi) were examined in vivo in order to be utilized as a cosmetic material which was followed by an in vitro assay. Examinations, such as acute oral toxicity, skin sensitization, acute eye irritation, and primary skin irritation, were peformed with a variety of laboratory animals. Phototoxic and photosensitization tests were not conducted since all chondroitin sulfates failed to absorb U.V. light at the range of 280 to 420 nm. In acute dermal and eye irritation, both specific clinical signs and dead cases were not demonstrated during the test period, but crude chondroitin sulfates from midduck and munggae tunics, and standard chondroitin sulfate from bovine trachea were showed 2.5, 1 and 1.25 of acute ocular irritation index (A.O.I.), respectively. In the case of skin sensitization, crude chondroitin sulfate from midduck tunics exhibited neither specific clinical signs nor dead cases in the entire course of the examination. While in acute oral toxicity, crude chondroitin sulfates from both midduck and munggae tunics found neither specific clinical signs nor dead cases during the test, and LD50 was suspected to be over 2 g/kg. Based on this study, it was proven that crude chondroitin sulfates from either midduck or munggae tunics can be used safely as a cosmetic material.

Cellular Protective Effects and Mechanisms of Kaempferol and Nicotiflorin Isolated from Annona muricata against 1O2-induced Damage (그라비올라로부터 분리된 Kaempferol 및 Nicotiflorin의 1O2으로 유도된 세포손상에 대한 보호 효과와 그 메커니즘)

  • Park, So Hyun;Shin, Hyuk Soo;Lee, Nan Hee;Hong, In Kee;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.49-55
    • /
    • 2018
  • In this study, we investigated the cellular protective effects and mechanisms of nicotiflorin and its aglycone kaempferol isolated from Annona muricata. The protective effect of these components against $^1O_2$-induced cell damage was also studied by using L-ascorbic acid and (+)-${\alpha}$-tocopherol as controls. Kaempferol exhibited the most potent protective effect, followed by (+)-${\alpha}$-tocopherol and nicotiflorin. L-Ascorbic acid did not exhibit any cellular protective effects. To elucidate the mechanism underlying protective effects, the quenching rate constant of the singlet oxygen, free radical-scavenging activity, ROS-scavenging activity, and uptake ratio of the erythrocyte membrane were measured. The results showed that the cell membrane penetration is a key factor determining the cellular protective effect of kaempferol and its glycoside nicotiflorin. The result from L-ascorbic acid demonstrated that the cellular protective effect of a compound depends on its ability to penetrate the cell membrane and is independent of its antioxidant capacity. In addition, it is suggested that cellular protective effects of kaempferol and (+)-${\alpha}$-tocopherol depend not only on the cell permeability, but also on free radical- and ROS-scavenging activities. These results indicate that the cell permeability and free radical- and ROS- scavenging activities of antioxidants are major factors affecting the protection of cell membranes against the oxidative damage induced by photosensitization reaction.

Antioxidant and photoprotective activities of various extracts from the roots of Rumex crispus L. (소리쟁이(Rumex crispus L.) 뿌리 추출물의 항산화 및 광피해 억제 효과)

  • Kim, Yeon-Soon;Suh, Hwa-Jin;Park, Shin
    • Food Science and Preservation
    • /
    • v.20 no.5
    • /
    • pp.684-690
    • /
    • 2013
  • The antioxidant and photoprotective effects of various extracts from the roots of Rumex crispus L. were evaluated. The concentrations ($IC_{50}$) of various extracts required to exert a 50% reducing effect on a DPPH radical were found to be 0.005~0.093 mg/mL. The ethyl acetate extract showed a more remarkable effect than the positive control ascorbic acid. The concentrations ($QC_{50}$) of the butanol and ethyl acetate extracts required to exert a 50% reducing effect on the singlet oxygen $^1O_2$ were found to be 0.464 and 0.365 mg/mL, respectively. Both extracts were also found to protect the in vitro biological system from the detrimental effect of a singlet oxygen $^1O_2$ on type II photosensitization in E. coli and genomic DNA. Among all the tested extracts, the ethyl acetate and butanol extracts contained higher amounts of total phenolic contents. The results suggest that our study may contribute to the development of new bioactive products with potential applications to the reduction of photo-produced oxidative stress involving reactive oxygen species in living organisms.

Bactericidal Effect of Pathogenic Bacteria on Acid Treatment Combined with Red, Green, and Blue LED Light at a Low Temperature Environment (저온에서 산 처리와 적색, 녹색, 청색 LED 조사의 조합에 따른 식중독 세균의 살균 효과)

  • Do, Jung Sun;Chung, Hyun-Jung;Bang, Woo-Suk
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.11
    • /
    • pp.1725-1732
    • /
    • 2015
  • The bactericidal effects of 642, 521, and 461 nm LED were investigated on Escherichia coli O157:H7 and Staphylococcus aureus strains in TSB with pH 7.2, 4.0, and 3.5 for 10 h at $15^{\circ}C$. The bactericidal effect of 461 nm blue LED was the most pronounced compared to 642 nm and 521 nm LEDs at pH 3.5. When E. coli was exposed to pH 3.5 with 461 nm LED, populations of E. coli O157:H7 ATCC 43894 and 35150 decreased by 4 and 5 log CFU/mL for 2 h, respectively. Populations of E. coli ATCC 8739 decreased by 5 log CFU/mL for 2 h. Further, S. aureus ATCC 27664, 43300, and 19095 were inactivated by 4, 5 and 5 log CFU/mL for 2 h, respectively, at pH 3.5 with 461 nm LED. In conclusion, combined treatment with 461 nm LED and acidic conditions at low-temperature ($15^{\circ}C$) showed the greatest antimicrobial effects. This study suggests that LEDs may be potentially used as a method to maintain the safety of the food preservation technology.

Effect of Water Temperature and Photoperiod on the Oxygen Consumption of Four Different Strains of Red Seabream, Pagrus major

  • Oh, Sung-Yong;Choi, Hee Jung;Kim, Min-Suk;Park, Yong Joo;Myoung, Jung-Goo;Kwon, Joon Yeong;Choi, Cheol Young
    • Journal of Marine Life Science
    • /
    • v.1 no.2
    • /
    • pp.109-116
    • /
    • 2016
  • We determined the effects of different water temperatures (15, 20, and 25℃) and photoperiod cycles (24L:0D, 12L:12D, and 0L:24D) on the oxygen consumption of the offspring of a cultured Japanese strain (JJ), a selected Korean strain (KK), and intraspecific hybrid strains (JK and KJ) of red seabream, Pagrus major, under starvation conditions. The different fish strains, water temperatures, and photoperiod cycles had effects on the mean oxygen consumption of fish. Oxygen consumption increased with increasing water temperatures for all photoperiod treatments (p<0.001). Fish held in continuous darkness (0L:24D) used consistently less oxygen than fish exposed to continuous light (p<0.05). The oxygen consumption of fish exposed to the light phase in a 12L:12D photoperiod was higher than that of fish in the dark phase of the 12L:12D cycle, and differences were significant in three of the strains: JJ (15℃), KK (15 and 20℃), and KJ (25℃). The oxygen consumption of the inbred (JJ and KK) and intraspecific hybrid (JK and KJ) strains varied with differing water temperatures and photoperiod cycles. The JK strain displayed significantly higher oxygen consumption than the other strains under all experimental conditions except 15℃ with a 0L:24D photoperiod. The JK and KJ strains usually showed the highest and lowest oxygen consumption values, respectively, whereas the inbred strains exhibited intermediate values. Oxygen consumption in the JJ and JK strains was usually higher than that of the KK and KJ strains. We propose that differences in the thermal sensitivity and photosensitization properties of the strains contribute to differences in their ability to adapt to changes in water temperature and photoperiod, thus resulting in differences in the amplitude of their metabolic rates.