• Title/Summary/Keyword: photonics

Search Result 3,967, Processing Time 0.025 seconds

Self-imaging of a phase line grating and analysis of its visibility (위상형 직선격자의 자체결상과 가시도 분석)

  • 백승선;이상일;조재흥;김영란
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.6
    • /
    • pp.606-612
    • /
    • 2003
  • The self-imaging effect or lensless imaging effect of a phase line grating is theoretically analyzed by using Fresnel diffraction theory, then experimentally investigated. The self-imaging distance $z_{T,p}$, that is the imaging distance being perfectly copied from the phase distribution of the phase grating to its intensity distribution with the magnification of 1X, can be uniquely defined as the (4n-3) $z_{T,a}$/4(n=positive integers), where rte is the well-known self-imaging distance of an amplitude grating. When the coherent laser beam is illuminated at the phase grating, the self-imaged images were obtained at $z_{T,p}$= $z_{T,a}$/4 and $z_{T,p}$=5 $z_{T,a}$/4 without any optics. On the other side, the phase-reversed self-imaging was obviously observed at $z_{T,p}$ = 3 $z_{T,a}$/4. The visibility of self-imaged images of a phase line grating as a function of the number of slits of the input grating was measured by the FFT(Fast Fourier Transform) results of the self-imaging images. As a result a stationary maximum visibility of V = 0.10 can be obtained from a grating with more than 15 slit pairs.n 15 slit pairs.

Fabrication and characterization of InGaAsP/InP multi-quantum well buried-ridge waveguide laser diodes (Buried-Ridge Waveguide Laser Diode 제작 및 특성평가)

  • 오수환;이지면;김기수;이철욱;고현성;박상기
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.6
    • /
    • pp.669-673
    • /
    • 2003
  • We fabricated a buried-ridge waveguide laser diode (B-RWG LD) which has more advantages for obtaining lateral single mode operation on the same ridge width and for the planarization of the device surface, compared to the conventional RWG LD. In this LD, the difference of the lateral effective refractive index can be controlled by the thickness of the InGaAsP layer which is grown on the active and the p-InP layers. The InGaAsP multiple quantum well was grown on a n-InP substrate by the CBE. The buried ridge structure was formed by selective wet etchings, followed by liquid phase epitaxy methods. The fabricated LD with the ridge width of 7 ${\mu}{\textrm}{m}$ showed a linear increase of the optical power up to 20 ㎽ without any kinks and a saturated output power of more than 80 ㎽. By measuring the far field pattern, we demonstrate that LDs with the ridge widths of 5 ${\mu}{\textrm}{m}$ and 7 ${\mu}{\textrm}{m}$ were operated in a lateral single mode up to 2.7I$_{th}$ and 2.4I$_{th}$, respectively.ely.

Development of 1×16 Thermo-optic MZI Switch Using Multimode Interference Coupler (다중모드 간섭현상을 이용한 1×16 마하젠더 스위치 개발)

  • Kim, Sung-Won;Hong, Jong-Kyun;Lee, Sang-Sun
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.469-474
    • /
    • 2006
  • A $1{\times}16$ thermo-optic switch with small excess loss using multimode interference(MMI) couplers is designed, fabricated, and measured. This paper introduces the proposed $1{\times}16$ thermo-optic switch, and discusses the measurement results. The $1{\times}16$ thermo-optic switch is farmed as 4-stage which consists of 15 unit devices. The unit devices are the $2{\times}2$ thermo-optic switches with Mach-Zehnder interferometer(MZI) structure. The characteristics of the $1{\times}16$ thermo-optic switch depends strongly on each unit device. The unit deviceconsists of two 3-dB general interference MMI couplers and two single mode waveguide arms as a phase shifter. First of all, the 3-dB optical splitter and $2{\times}2$ MZI thermo-optic switch have been tested to confirm the characteristics of the unit devices of the $1{\times}16$ MZI thermo-optic switch. Using the measurement results of the unit devices, the $1{\times}16$ MZI thermo-optic switch can be produced with better characteristics. The resultant structure of the MMI coupler with the optical light source of wavelength of 1550nm for the $1{\times}16$ thermo-optic switch is that the width and the optimized length are $25{\mu}m\;and\;1580{\mu}m$, respectively. The smallest excess loss fur the unit device is -0.5dB and the average excess loss is -0.7dB.

A Study on the Improvement of Wavefront Sensing Accuracy for Shack-Hartmann Sensors (Shack-Hartmann 센서를 이용한 파면측정의 정확도 향상에 관한 연구)

  • Roh, Kyung-Wan;Uhm, Tae-Kyoung;Kim, Ji-Yeon;Park, Sang-Hoon;Youn, Sung-Kie;Lee, Jun-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.383-390
    • /
    • 2006
  • The SharkHartmann wavefront sensors are the most popular devices to measure wavefront in the field of adaptive optics. The Shack-Hartmann sensors measure the centroids of spot irradiance distribution formed by each corresponding micro-lens. The centroids are linearly proportional to the local mean slopes of the wavefront defined within the corresponding sub-aperture. The wavefront is then reconstructed from the evaluated local mean slopes. The uncertainty of the Shack-Hartmann sensor is caused by various factors including the detector noise, the limited size of the detector, the magnitude and profile of spot irradiance distribution, etc. This paper investigates the noise propagation in two major centroid evaluation algorithms through computer simulation; 1st order moments of the irradiance algorithms i.e. center of gravity algorithm, and correlation algorithm. First, the center of gravity algorithm is shown to have relatively large dependence on the magnitudes of noises and the shape & size of irradiance sidelobes, whose effects are also shown to be minimized by optimal thresholding. Second, the correlation algorithm is shown to be robust over those effects, while its measurement accuracy is vulnerable to the size variation of the reference spot. The investigation is finally confirmed by experimental measurements of defocus wavefront aberrations using a Shack-Hartmann sensor using those two algorithms.

Transport and optical properties of transparent conducting oxide In2O3:Zn (비정질 투명전도막 In2O3:Zn의 전기적 광학적 특성)

  • 노경헌;최문구;박승한;주홍렬;정창오;정규하;박장우
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.5
    • /
    • pp.455-459
    • /
    • 2002
  • The transport and optical properties of $In_2O_3$:Zn(IZO) thin films grown by DC magnetron sputtering deposition have been studied. The deposition temperatures ($T_s$) were varied from room temperature to $400^{\circ}C$ in $50^{\circ}C$ steps. The IZO films are an amorphous phase for $T_s$<$300^{\circ}C$ and polycrystalline phase for $350^{\circ}C$$T_s$. In contrast to ordinary films, amorphous IZO films have lower resistivity and higher optical transmittance than polycrystalline IZO films. The resistivity of amorphous IZO was in the range of 0.29~0.4 m$\Omega$cm and that of polycrystalline IZO was in the range of 1~4 m$\Omega$cm. The carrier type for IZO film was found to be n-type, and the carrier density, was $3~5{\times}10^{20}/cm^3$. The Hall mobility, $({\mu}_H)$, was 20~$50\textrm{cm}^2$/V.sec. The predominant scattering mechanisms in both amorphous and polycrystalline IZO films were believed to be ionized impurity scattering and lattice scattering. The visible transmittance of the IZO films, which decreases with an increase of TS, was above 80%.

Photovoltaic Properties of MEH-PPV/DFPP Blend Devices Based on Novel n-type Polymer DFPP (새로운 n형 고분자인 DFPP 기반의 MEH-PPV/DFPP Blend 소자의 광전특성)

  • Kim, Su-Hyun;Moon, Ji-Sun;Lee, Jae-Woo;Lee, Seok;Kim, Sun-Ho;Byun, Young-Tae;Kim, Dong-Young;Lee, Chang-Jin;Kim, Eu-Gene;Chung, Young-Chul;Rie, Kung-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.461-468
    • /
    • 2006
  • Optical characteristics in polymer films of MEH-PPV/DFPP blends were for the first time investigated. DFPP (N, N'-diperfluorophenyl-3,4,9,10-perylenetetracarboxylic diimide) used here was a novel n-type polymer, which had good stability in air and solubility in common solvents. For a 1:9 DFPP:MEH-PPV blend, highly efficient quenching of photoluminescence (PL) was observed. In addition, the photocurrent responses of these MEH-PPV/DFPP photovoltaic cells were measured. When the light intensity was $50mW/cm^2$, short-circuit photocurrent densities were two times higher than those of single layer MEH-PPV devices.

SI-traceable Calibration of a Transmissometer for Meteorological Optical Range (MOR) Observation (기상관측용 투과형 시정계의 국제단위계에 소급하는 교정)

  • Park, Seongchong;Lee, Dong-Hoon;Kim, Yong-Gyoo
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.2
    • /
    • pp.73-82
    • /
    • 2015
  • This work demonstrates the indoor SI-traceable calibration of a transmissometer with a 75-m baseline for the measurement of visibility in MOR (Meteorological Optical Range). The calibration is performed using a set of neutral density (ND) filters (OD 0.1-2.5) and a set of high-transmission quartz glass plates (a bare quartz glass plate and antireflective-coated quartz glass plates), the collection consisting of 20 artifacts in total. The luminous transmittance values of the reference artifacts had been calibrated traceable to the KRISS spectral transmittance scale, which ranges from 0.2 % to 99.5 %. The transmissometer to be calibrated typically consists of a loosely collimated light source based on a white LED (CCT ~5000 K) and a luminous intensity detector with a CIE 1924 V(${\lambda}$) spectral response. As a result of calibration, we obtained the MOR error and its uncertainty for the transmissometer in 20 m - 40 km of MOR. Based on the results, we investigated the applicability of the calibration method and the conformity of the transmissometer to the ICAO's (International Civil Aviation Organization) accuracy requirement for meteorological visibility measurement. We expect that this work will establish the standard procedure for the SI-traceable calibration of a transmissometer.

Linewidth Reduction of a Yellow Laser by a Super-cavity and the Measurement of the Cavity Finesse (초공진기를 이용한 노란색 레이저의 선폭 축소 및 초공진기의 예리도 측정)

  • Lee, Won-Kyu;Park, Chang-Yong;Park, Sang-Eon;Ryu, Han-Young;Yu, Dai-Hyuk;Mun, Jong-Chul;Suh, Ho-Suhng
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.3
    • /
    • pp.123-128
    • /
    • 2010
  • Sum frequency generation was utilized to obtain a yellow laser with the wavelength of 578.4 nm for a probe laser of an Yb lattice clock. The output of an Nd:YAG laser with wavelength of 1319 nm and that of an Yb-fiber laser with wavelength of 1030 nm were passed through a waveguided periodically-poled lithium niobate (WG-PPLN) for sum frequency generation. It is required that the probe laser has a linewidth of the order of 1 Hz to fully resolve the Yb lattice clock transition. Thus, the linewidth of the probe laser was reduced by stabilizing the frequency to a super-cavity. This was made of ULE with a low thermal expansion coefficient, and was mounted on an active vibration-isolation table at the optimal point for the reduced sensitivity to vibration. Also, this was installed in a vacuum chamber, and the temperature was stabilized to 1 mK level. This system was installed in an acoustic enclosure to block acoustic noise. The finesse of the super-cavity was measured to be 380 000 from the photon life time of the cavity.

Cancellation of Phase Noise in 1.4 GHz RF Signal Transferred to a Remote Site through 13 km Fiber (13 km 광섬유를 통하여 원격지로 전송된 1.4 GHz RF 신호의 위상잡음 제거)

  • Lee, Won-Kyu;Park, Chang-Yong;Mun, Jong-Chul;Yu, Dai-Hyuk
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.3
    • /
    • pp.103-110
    • /
    • 2010
  • A fiber-phase-noise compensating system was constructed for a 1.4 GHz reference frequency transferred through a 13-km-long fiber spool. The transfer instability was dependent on the temperature variation of the compensating system. With the room temperature variation stabilized within $0.3^{\circ}C$, the transfer instability was $4.6{\times}10^{-14}$ at 0.8 s of average time and $2.5{\times}10^{-16}$ at 1000 s of average time with the fiber phase noise compensated. However, with the room temperature changed by $3.5^{\circ}C$, the transfer instability was $6.8{\times}10^{-14}$ at 1.2 s of average time and $3.0{\times}10^{-15}$ at 1000 s of average time. From this result, the temperature stability condition for the experimental setup could be determined to obtain a transfer instability of $10^{-16}$ at 1000 s of average time.

A Study of the Fiber Fuse in Single-mode 2-kW-class High-power Fiber Amplifiers (단일 모드 2 kW급 고출력 광섬유 증폭기 내의 광섬유 용융 현상에 관한 연구)

  • Lee, Junsu;Lee, Kwang Hyun;Jeong, Hwanseong;Kim, Dong Jun;Lee, Jung Hwan;Jo, Minsik
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.1
    • /
    • pp.7-12
    • /
    • 2020
  • In this paper, we experimentally investigate the fiber fuse in single-mode 2-kW-class high-power fiber amplifiers, depending on the cooling method at the splicing point. We measured the temperature of the splicing point between the pump-signal combiner and gain fiber as a function of laser output power. The temperature of the splicing point increased from 20 to 32℃ with a slope of 0.01℃/W, up to 1.2 kW of laser output power. At higher powers the temperature of the splicing point increased dramatically, with a slope of 0.08℃/W. After that, the fiber amplifier was destroyed during operation at 1.96 kW of output power by fiber fuse. The bullet shape, a common feature of fiber fuse, was observed in the damaged passive fiber core of the pump-signal combiner. Later, we adopted an improved water-cooled cold plate to increase the cooling efficiency at the splicing point, and investigated the laser output power. The temperature at the splicing point was 35.8℃ with a temperature-rise slope of 0.007℃/W at the maximum output power of 2.05 kW. The beam quality M2 was measured to be less than 1.3, and the output beam's profile was a stable Gaussian shape. Finally, neither fiber fuse nor mode instability was observed in the fiber amplifier at the maximum output power of 2.05 kW.