Browse > Article
http://dx.doi.org/10.3807/KJOP.2010.21.3.103

Cancellation of Phase Noise in 1.4 GHz RF Signal Transferred to a Remote Site through 13 km Fiber  

Lee, Won-Kyu (Center for Emerging Measurement Standards, Korea Research Institute of Standards and Science)
Park, Chang-Yong (Center for Emerging Measurement Standards, Korea Research Institute of Standards and Science)
Mun, Jong-Chul (Center for Emerging Measurement Standards, Korea Research Institute of Standards and Science)
Yu, Dai-Hyuk (Center for Emerging Measurement Standards, Korea Research Institute of Standards and Science)
Publication Information
Korean Journal of Optics and Photonics / v.21, no.3, 2010 , pp. 103-110 More about this Journal
Abstract
A fiber-phase-noise compensating system was constructed for a 1.4 GHz reference frequency transferred through a 13-km-long fiber spool. The transfer instability was dependent on the temperature variation of the compensating system. With the room temperature variation stabilized within $0.3^{\circ}C$, the transfer instability was $4.6{\times}10^{-14}$ at 0.8 s of average time and $2.5{\times}10^{-16}$ at 1000 s of average time with the fiber phase noise compensated. However, with the room temperature changed by $3.5^{\circ}C$, the transfer instability was $6.8{\times}10^{-14}$ at 1.2 s of average time and $3.0{\times}10^{-15}$ at 1000 s of average time. From this result, the temperature stability condition for the experimental setup could be determined to obtain a transfer instability of $10^{-16}$ at 1000 s of average time.
Keywords
Optical fiber; RF transmission; Phase noise cancellation; Transfer instability; Temperature stabilization;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. Kumagai, M. Fujieda, S. Nagano, and M. Hosokawa, “Stable radio frequency transfer in 114 km urban optical fiber link,” Opt. Lett. 34, 2949-2951 (2009).   DOI
2 K. Sato, T. Hara, M. Fujishita, S. Kuji, S. Tsuruta, Y. Tamura, T. Sasao, K. Sato, and S. Manabe, “Application of phase-stabilized optical fiber in transmission of reference and IF signals in VLBI observation,” IEEE Trans. Instr. Meas. 41, 385-389 (1992).   DOI
3 K. Sato, T. Hara, S. Kuji, K. Asari, M. Nishiro, and N. Kawano, “Development of an ultrastable fiber optic frequency distribution system using an optical delay control module,” IEEE Trans. Instr. Meas. 19, 19-24 (2000).
4 R. T. Logan Jr. and G. F. Lutes, “High stability microwave fiber optic systems: demonstrations and applications,” in Proc. 1992 IEEE Frequency Control Symposium (Hershey, PA, USA, May 1992), pp. 310-316.
5 P. A. Krug, M. I. Large, and R. G. Davison, “Optical fiber technique for remote stabilization of RF phase,” Optical Fiber Technology 5, 175-184 (1999).   DOI
6 M. Calhoun, R. Sydnor, and W. Diener, “A stabilized 100-megahertz and 1-gigahertz reference frequency distribution for Cassini radio science,” IPN Progress Report 42-148, 1-11 (2002).
7 C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy $Al^+$ optical clocks,” Phys. Rev. Lett. 104, 070802 (2010).   DOI   ScienceOn
8 C. Daussy, O. Lopes, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of $10^{-17}$,” Phys. Rev. Lett. 94, 203904 (2005).   DOI
9 A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28-THz spectral region with a femtosecond laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B 78, 25-30 (2004).   DOI
10 O. Lopez, A. Amy-Klein, C. Daussy, C. Chardonnet, F. Narbonneau, M. Lurs, and G. Santarelli, “86-km optical link with a resolution of $2{\times}10^{-18}$ for RF frequency transfer,” Eur. Phys. J. D. 48, 35-41 (2008).   DOI
11 S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101-1-25 (2007).   DOI
12 F. Narbonneau, M. Lours, S. Bize, A. Clairon, G. Santarelli, O. Lopez, C. Daussy, A. Amy-Klein, and C. Chardonnet, “High resolution frequency standard dissemination via optical fiber metropolitan network,” Rev. Sci. Instr. 77, 064701 (2006).   DOI
13 J. Frisch, D. G. Brown, and E. L. Cisneros, “The RF phase distribution and timing system for the NLC,” in Proc. XX International Linac Conference (Monterey, California, USA, Aug. 2000), pp. 745-747.
14 J. Frisch, D. Bernstein, D. Brown, and E. Cisneros, “A high stability, low noise RF distribution system,” in Proc. IEEE Particle Accelerator Conference (Chicago, IL, USA, Aug. 2001), vol. 2, pp. 816-818.
15 W.-K. Lee, D.-S. Yee, Y.-B. Kim, and T. Y. Kwon, “Highly stable RF transfer over a fiber network by fiber-induced phase noise cancellation,” Hankook Kwanghak Hoeji (Korean Opt. Photon.) 17, 514-518 (2006).   DOI
16 J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen JR., W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE Trans. Instrum. Meas. IM-20, 105-120 (1971).   DOI
17 J. Ye, J. L. Peng, R. J. Jones, K. W. Holman, J. L. Hall, D. J. Jones, S. A. Diddams, J. Kitching, S. Bize, J. C. Bergquist, L. W. Hollberg, L. Robertsson, and L.-S. Ma, “Delivery of high-stability optical and microwave frequency standards over an optical fiber network,” J. Opt. Soc. Am. B 20, 1459-1467 (2003).   DOI