DOI QR코드

DOI QR Code

단일 모드 2 kW급 고출력 광섬유 증폭기 내의 광섬유 용융 현상에 관한 연구

A Study of the Fiber Fuse in Single-mode 2-kW-class High-power Fiber Amplifiers

  • 투고 : 2019.11.08
  • 심사 : 2019.12.13
  • 발행 : 2020.02.25

초록

본 연구에서는 단일 모드 2 kW급 고출력 광섬유 증폭기에서 발생한 광섬유 용융 현상을 융착점 냉각 특성에 따라 실험적으로 분석한 결과를 소개한다. 레이저 출력에 따른 펌프 광 결합기와 주증폭기 이득 광섬유 사이의 융착점 온도를 레이저 출력에 따라 측정하였다. 융착점 온도는 레이저 출력 1.2 kW까지는 20℃에서 32℃까지 온도 상승 기울기 0.01℃/W로 증가율이 작았으나 1.2 kW 이후부터 온도 상승 기울기 0.08℃/W로 융착점 온도가 급격하게 증가하였고 1.96 kW 출력에서 동작 중 광섬유 용융 현상에 의해 광섬유 증폭기가 손상되었다. 손상된 펌프 광 결합기의 전송 광섬유 코어에는 광섬유 용융의 전형적인 탄환모양손상 형상이 나타났다. 이후 수냉식 냉각판을 적용하여 융착점 부위의 냉각 성능을 향상시킨 후 레이저 출력 특성 변화를 조사하였다. 최대 출력 2.05 kW에서 광섬유 융착점 온도는 35.8℃였고 레이저 출력에 따른 온도 상승 기울기는 0.007℃/W로서 급격한 증가 없이 일정하게 유지되었다. 광섬유 증폭기에서 광섬유 용융 현상은 발생하지 않았으며 최대 출력 2.05 kW에서 모드 불안정성 역시 발생하지 않았다. 최대 출력 2.05 kW까지 빔 프로파일은 안정적인 가우시안 형태였으며 빔 품질 1.3 이하를 유지하였다.

In this paper, we experimentally investigate the fiber fuse in single-mode 2-kW-class high-power fiber amplifiers, depending on the cooling method at the splicing point. We measured the temperature of the splicing point between the pump-signal combiner and gain fiber as a function of laser output power. The temperature of the splicing point increased from 20 to 32℃ with a slope of 0.01℃/W, up to 1.2 kW of laser output power. At higher powers the temperature of the splicing point increased dramatically, with a slope of 0.08℃/W. After that, the fiber amplifier was destroyed during operation at 1.96 kW of output power by fiber fuse. The bullet shape, a common feature of fiber fuse, was observed in the damaged passive fiber core of the pump-signal combiner. Later, we adopted an improved water-cooled cold plate to increase the cooling efficiency at the splicing point, and investigated the laser output power. The temperature at the splicing point was 35.8℃ with a temperature-rise slope of 0.007℃/W at the maximum output power of 2.05 kW. The beam quality M2 was measured to be less than 1.3, and the output beam's profile was a stable Gaussian shape. Finally, neither fiber fuse nor mode instability was observed in the fiber amplifier at the maximum output power of 2.05 kW.

키워드

참고문헌

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, "High power fiber lasers: current status and future perspectives," J. Opt. Soc. Am. B 27, B63-B92 (2010). https://doi.org/10.1364/JOSAB.27.000B63
  2. C. Jauregui, J. Limpert, and A. Tunnermann, "High-power fiber lasers," Nat. Photon. 7, 861-867 (2013). https://doi.org/10.1038/nphoton.2013.273
  3. M. N. Zervas and C. A. Codemard, "High power fiber lasers: a review," IEEE J. Sel. Top. Quantum Electron. 20, 0904123 (2014).
  4. A. Liu, "Stimulated Brillouin scattering in single-frequency fiber amplifiers with delivery fibers," Opt. Express 17, 15201-15209 (2009). https://doi.org/10.1364/OE.17.015201
  5. G. Agrawal, Nonlinear Fiber Optics (Academic Press, Cambridge, US, 2012).
  6. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tunnermann, "Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers," Opt. Express 19, 13218-13224 (2011). https://doi.org/10.1364/OE.19.013218
  7. Y. Fan, B. He, J. Zhou, J. Zheng, H. Liu, Y. Wei, J. Dong, and Q. Lou, "Thermal effects in kilowatt all-fiber MOPA," Opt. Express 19, 15162-15172 (2011). https://doi.org/10.1364/OE.19.015162
  8. Z. Huang, T. Y. Ng, C. P. Seah, S. H. T. Lim, and R. F. Wu, "Thermal modeling of active fiber and splice points in high power fiber laser," Proc. SPIE 7914, 79142W (2011).
  9. R. Kashyap and K. J. Blow, "Observation of catastrophic self-propelled self-focusing in optical fibres," Electron. Lett. 24, 47-49 (1988). https://doi.org/10.1049/el:19880032
  10. Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, "Evaluation of high-temperature absorption coefficients of optical fibers," IEEE Photonics Technol. Lett. 16, 1008-1010 (2004). https://doi.org/10.1109/LPT.2004.824633
  11. E. M. Dianov, I. A. Bufetov, and A. A. Frolov, "Destruction of silica fiber cladding by the fuse effect," Opt. Lett. 29, 1852-1854 (2004). https://doi.org/10.1364/OL.29.001852
  12. J. Wang, S. Gray, D. Walton, and L. Zenteno, "Fiber fuse in high power optical fiber," Proc. SPIE 7134, 71342E (2008).
  13. H. Zhang, P. Zhou, X. Wang, H. Xiao, and X. Xu, "Fiber fuse effect in high-power double-clad fiber laser," in Proc. Conference on Lasers and Electro-Optics Pacific Rim (Kyoto, Japan, Jun. 2013), paper WPD-4.
  14. J.-Y. Sun, Q.-R. Xiao, D. Li, X.-J. Wang, H.-T. Zhang, M.-L. Gong, and P. Yang, "Fiber fuse behavior in kW-level continuous-wave double-clad field laser," Chin. Phys. B 25, 014202 (2015). https://doi.org/10.1088/1674-1056/25/1/014202
  15. Q.-R. Xiao, J.-D. Tian, Y.-S. Huang, X.-J. Wang, Z.-H. Wang, D. Li, P. Yan, and M.-L. Gong, "Internal features of fiber fuse in a Yb-doped double-clad fiber at 3 kW," Chin. Phys. Lett. 35, 054201 (2018). https://doi.org/10.1088/0256-307X/35/5/054201
  16. Q. Xiao, J. Tian, P. Yan, D. Li, and M. Gong, "Exploring the initiation of fiber fuse," Sci. Rep. 9, 11655 (2019). https://doi.org/10.1038/s41598-019-47911-0
  17. R. Su, R. Tao, X. Wang, H. Zhang, P. Ma. P. Zhou, and X. Xu, "2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression," Laser Phys. Lett. 14, 085102 (2017). https://doi.org/10.1088/1612-202X/aa760b
  18. K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, "Threshold power and fiber degradation induced modal instabilities in high power fiber amplifiers based on large mode area fibers," Proc. SPIE 8961, 89611R (2014).