• Title/Summary/Keyword: photonic crystals

Search Result 166, Processing Time 0.031 seconds

Fabrication of Large Area Photonic Crystals with Periodic Defects by One-Step Holographic Lithography

  • Ma, Jie;Wong, Kam Sing;Li, Shan;Chen, Zhe;Zhou, Jianying;Zhong, Yongchun
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.63-68
    • /
    • 2015
  • A one-step fabrication of a photonic crystal (PC) with functional defects is demonstrated. Using multi-beam phase-controlled holographic lithography with a diffracting optical element, large area one dimensional (1D) and two dimensional (2D) PCs with periodic defects were fabricated. The uniform area is up to $2mm^2$, and tens of defect channels have been introduced in the 1D and 2D PC structure. This technique gives rise to substantial reduction in the fabrication complexity and significant improvement in the spatial accuracy of introducing functional defects in photonic crystals. This method can also be used to design and fabricate three dimensional (3D) PCs with periodic defects.

Normalized characteristics of the photonic bandgaps in two-dimensional photonic crystals with a hexagonal lattice by FDID simulation (FDTD 시뮬레이션을 이용한 육방정계형 2차원 광자결정에서의 광자밴드갭 특성 정규화)

  • Yeo, Jong-Bin;Lee, Hyun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.38-38
    • /
    • 2009
  • Characteristics of the photonic bandgaps (PBGs) in two-dimensional photonic crystals (2D PCs) with a hexagonal lattice have theoretically studied using a finite difference time domain (FDTD) simulation. In this research, we propose a concept of optical coverage ratio (OCR) as a new structural parameter to determine the PBGs for E-polarized light. The OCR is an optically compensated filling factor. It is possible to normalize the PBGs of 2D PCs by introducing the OCR.

  • PDF

Fabrication and Linear & Nonlinear Optical Characterization of Photonic Crystals (포토닉 밴드갭 광결정의 제작과 선형 및 비선형 광학 특성 연구)

  • Ha Na Yeong;U Yeon Gyeong;Hwang Ji-Su;Jang Hye-Jeong;Park Byeong-Ju;U Jeong-Won
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.162-163
    • /
    • 2002
  • 1-D photonic band-gap structure is identified in a cholesteric liquid crystal system. The optical transmission spectrum is measured and compared with the theoretical analysis. Nonlinear transmission is measured near the band edge. Also 3-D photonic band-gap structures are fabricated from dielectric colloidal polystyrene beads through a centrifuge method. The fabricated photonic crystals exhibit opalescent colors under white light and show a clear diffraction peak dependent on the incident angle of the light beam. Also the scanning electron microscope image was taken to verify the face-centered cubic crystal structure. Bragg's law and Snell's law are employed to describe the position of angle resolved diffraction peaks. It was shown that the optically deduced effective refractive index and lattice constants were in good agreement with the crystal structure identified by scanning electron microscope.

  • PDF

Fabrication and Optical Characterization of Colloidal 3-D Photonic Crystals

  • N. Y. Ha;Y. Woo;Park, Byungchoo;J. W. Wu
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.15-16
    • /
    • 2003
  • 3-D photonic band-gap structures are fabricated from dielectric colloidal polystyrene beads through a centrifuge method. The fabricated photonic crystals exhibit opalescent colors under white light and show a clear diffraction peak dependent on the incident angle of the light beam. Also the scanning electron microscope image was taken to verify the face-centered cubic crystal structure. Bragg's law and Snell's law are employed to describe the position of angle resolved diffraction peaks. It was shown that the optically deduced effective refractive index and lattice constants were in good agreement with the crystal structure identified by scanning electron microscope.

New Phosphor and Material Structures for Displays

  • Summers, Christopher J.;King, Jeffrey;Park, Woun-Jhang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.243-252
    • /
    • 2002
  • We propose a new concept: that of photonic crystal phosphors (PCPs) for display and phosphor related applications. It is well known that microcavities with dimensions comparable to the emitting wavelength strongly enhance light-matter interactions, resulting in a significant increase in spontaneous emission rate, which can be directly translated into enhancement in phosphor efficiency. In recent simulations we have demonstrated that when a microcavity is formed in a nano-phosphor structure, the luminescence band is modified, and can be made spectrally sharp and tunable by engineering the geometry/material properties of the cavity and the surrounding photonic crystal lattice. New phosphor material structures based on photonic crystals are proposed. Applications to thin film EL phosphors and particle phosphors are discussed. Additionally, economic methods of synthesizing and incorporating PCPs into current display applications are proposed.

  • PDF

Effect of Heat-Treatment on the Optical Properties of Self-Assembled SiO2 Photonic Crystals (자기조립을 통해 형성된 실리카 광자결정의 광특성에 미치는 열처리 효과)

  • O, Yong-Taeg;Kim, Myung-Soon;Shin, Dong-Chan
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.2 s.273
    • /
    • pp.127-131
    • /
    • 2005
  • We examined the effect of low temperature heat-treatment on the optical properties of the photonic crystals self-assembled using a monodispersed spherical $SiO_2$ nanoparticle. When the heat treatment temperature increased, the reflectance peak, which is induced by the photonic band gap, moved to a shorter wavelength direction, and the peak intensity of Fabry-Perot fringes also increased. The highest reflectance peak intensity was obtained in the sample heat-treated at $250\~300^{\circ}C$. The heat-treatment reduced the average particle size and the quantity of defects, and increased the packing density of the photonic crystal.

PDMS Stamp Fabrication for Photonic Crystal Waveguides (광자결정 도파로 성형용 PDMS 스탬프 제작)

  • Oh, Seung-Hun;Choi, Du-Seon;Kim, Chang-Seok;Jeong, Myung-Yung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.153-158
    • /
    • 2007
  • Recently nano imprint lithography to fabricate photonic crystal on polymer is preferred because of its simplicity and short process time and ease of precise manufacturing. But, the technique requires the precise mold as an imprinting tool for good replication. These molds are made of the silicon, nickel and quartz. But this is not desirable due to complex fabrication process, high cost. So, we describe a simple, precise and low cost method of fabricating PDMS stamp to make the photonic crystals. In order to fabricate the PDMS mold, we make the original pattern with designed hole array by finding the optimal electron beam writing condition. And then, we have tried to fabricate PDMS mold by the replica molding with ultrasonic vibration and pressure system. We have used the cleaning process to solve the detaching problem on the interface. Using these methods, we acquired the PDMS mold for photonic crystals with characteristics of a good replication. And the accuracy of replication shows below 1% in 440nm at diameter and in 610nm at lattice constant by dimensional analysis by SEM and AFM.

Characteristics of Interface States in One-dimensional Composite Photonic Structures

  • Zhang, Qingyue;Mao, Weitao;Zhao, Qiuling;Wang, Maorong;Wang, Xia;Tam, Wing Yim
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.270-281
    • /
    • 2022
  • Based on the transfer-matrix method (TMM), we report the characteristics of the interface states in one-dimensional (1D) composite structures consisting of two photonic crystals (PCs) composed of binary dielectrics A and B, with unit-cell configurations ABA (PC I) and BAB (PC II). The dependence of the interface states on the number of unit cells N and the boundary factor x are displayed. It is verified that the interface states are independent of N when the PC has inversion symmetry (x = 0.5). Besides, the composite structures support the formation of interface states independent of the PC symmetry, except that the positions of the interface states will be varied within the photonic band gaps. Moreover, the robustness of the interface states against nonuniformities is investigated by adding Gaussian noise to the layer thickness. In the case of inversion symmetry (x = 0.5) the most robust interface states are achieved, while for the other cases (x ≠ 0.5) interface states decay linearly with position inside the band gap. This work could shed light on the development of robust photonic devices.

Optical Properties of TeOx(2x One-dimensional Photonic Crystals (TeOx(22 1차원 광자결정의 광학 특성평가)

  • Kong, Heon;Yeo, Jong-Bin;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.831-836
    • /
    • 2014
  • One-dimensional (1D) photonic crystals (PCs) were prepared by $TeO_x(2<x<3)/SiO_2$ with the difference refractive index, and fabricated by sputtering technique from a $TeO_2$ and $SiO_2$ target. The $TeO_x$(2$Ar:O_2=40:10$). A 10-pair $TeO_x(2<x<3)/SiO_2$ 1D PCs were fabricated with the structure parameters of filling factor=0.5185, and period=410 nm. The properties of 1D PCs with and without a defect layer were evaluated by UV-VIS-NIR. A normal mode 1D PC have a photonic band gap (PBG) in the near infrared (NIR) region from 1,203 to 1,421 nm. In the case of 1D PC containing a defect layer, a defect level appears at 1,291 nm. The measured transmittance (T) spectra are nearly corresponding to calculated results. After He-Cd laser exposure, the defect level is shifted from 1,291 nm to 1,304 nm.