One-dimensional magnetic photonic crystals J. B. Kim¹, G. J. Lee¹, Y. P. Lee^{1*}, J. Y. Rhee², K. W. Kim³ and C. S. Yoon⁴ ¹Quantum Photonic Science Research Center and BK21 Program Division of Advanced Research and Education in Physics, Hanyang University, Korea, ²BK21 Physics Research Division and Institute of Basic Science, Sungkyunkwan University, Korea, ³Department of Physics, Sunmoon University, Korea ⁴Department of Materials Science and Engineering, Hanyang University, Korea * E-mail: yplee@hanyang.ac,kr The magnetic and the magneto-optical properties of periodic magnetic structure, produced by the femtosecond-laser induced crystallization of amorphous Co₂MnSi films, were elucidated. The amorphous Co₂MnSi films have been prepared by rf-magnetron sputtering on a glass substrate at room temperature. In order to form a grating structure, two-beam interference of femtosecond laser pulses was employed. The atomic-force-microscopy and the transmission-electron-microscopy results show regularly-spaced alternating lines with a periodicity of 2 µm. The magnetic-force-microscopy results reveal the periodic patterns of magnetic domains. The Kerr hysteresis loops of sample were measured by using a magneto-optical microscope. The enhanced magneto-optical properties were observed for the first-order diffracted beam. It was found that the films with a spatially periodic magnetic structure can be easily fabricated by the selective crystallization of a paramagnetic Co₂MnSi amorphous film, which crystallizes into the ferromagnetic phase upon the illumination with sufficiently intense laser light.