• Title/Summary/Keyword: photoemission spectroscopy

Search Result 167, Processing Time 0.03 seconds

Rotated Domains in Chemical Vapor Deposition-grown Monolayer Graphene on Cu(111): Angle-resolved Photoemission Study

  • Jeon, Cheolho;Hwang, Han-Na;Lee, Wang-Geun;Jung, Yong Gyun;Kim, Kwang S.;Park, Chong-Yun;Hwang, Chan-Cuk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.146.2-146.2
    • /
    • 2013
  • Copper is considered to be the most promising substrate for the growth of high-quality and large area graphene by chemical vapor deposition (CVD), in particular, on the (111) facet. Because the interactions between graphene and Cu substrates influence the orientation, quality, and properties of the synthesized graphene, we studied the interactions using angle-resolved photoemission spectroscopy. The evolution of both the Shockley surface state of the Cu(111) and the ${\pi}$ band of the graphene was measured from the initial stage of CVD growth to the formation of a monolayer. Graphene growth was initiated along the Cu(111) lattice, where the Dirac band crossed the Fermi energy (EF) at the K point without hybridization with the d-band of Cu. Then two rotated domains were additionally grown as the area covered with graphene became wider. The Dirac energy was about -0.4 eV and the energy of the Shockley surface state of Cu(111) shifted toward the EF by ~0.15 eV upon graphene formation. These results indicate weak interactions between graphene and Cu, and the electron transfer is limited to that between the Shockley surface state of Cu(111) and the ${\pi}$ band of graphene. This weak interaction and slight lattice mismatch between graphene and Cu resulted in the growth of rotated graphene domains ($9.6^{\circ}$ and $8.4^{\circ}$), which showed no significant differences in the Dirac band with respect to different orientations. These rotated graphene domains resulted in grain boundaries which would hinder a large-sized single monolayer growth on Cu substrates.

  • PDF

Photoemission study on the reactivity of organic molecules on chemically modified TiO2(001) surfaces

  • Gong, Ja-Hyeon;Park, Sang-Min;Hwang, Han-Na;Hwang, Chan-Guk;Kim, Yu-Gwon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.87-87
    • /
    • 2010
  • Adsorption and subsequent catalytic reactions of ethanol and acetaldehyde on chemically modified rutile TiO2(001) surfaces are probed by x-ray photoemission spectroscopy (XPS) using synchrotron radiation. TiO2 is a well-known photocatalyst for various catalytic reactions including oxidation of organic molecules. In this respect, the surface atomic structure has been found to play a vital role in determining the catalytic reactivity and selectivity of TiO2. In this study, we employ an atomically well-ordered reduced TiO2(001) surface which is prepared in a UHV chamber by repeated Ar+-sputtering and annealing (900 K) cycles. We systematically modify the surface by treating the surface with H2O or O2 at room temperature (RT). The catalytic reactivity of the surface-modified TiO2(001) is evaluated by dosing ethanol/acetaldehyde onto the surface at RT and by subsequent annealing to higher temperatures (400~600 K). XPS spectra of C 1s core level are intensively used to probe any change in the oxidation state of carbon atoms. We find that the reactivity as well as the saturation coverage are significantly affected by the RT-treatment of the TiO2 surface with H2O or O2. For both reactant molecules (ethanol/acetaldehyde), oxidation reactions are found to be enhanced on the O2-treated surface compared with the reduced or H2O-treated surfaces. Possibly reaction pathways are discussed based on the observed XPS spectra.

  • PDF

Applications of Ar Gas Cluster Ion Beam Sputtering to Ta2O5 thin films on SiO2/Si (100)

  • Park, Chanae;Chae, HongChol;Kang, Hee Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.119-119
    • /
    • 2015
  • Ion beam sputtering has been widely used in Secondary Ion Mass Spectrometry (SIMS), X-ray Photoelectron Spectroscopy (XPS), and Auger Electron Spectroscopy (AES) for depth profile or surface cleaning. However, mainly due to severe matrix effects such as surface composition change from its original composition and damage of the surface generated by ion beam bombardment, conventional sputtering skills using mono-atomic primary ions with energy ranging from a few hundred to a thousand volts are not sufficient for the practical surface analysis of next-generation organic/inorganic device materials characterization. Therefore, minimization of the surface matrix effects caused by the ion beam sputtering is one of the key factors in surface analysis. In this work, the electronic structure of a $Ta_2O_5$ thin film on $SiO_2/Si$ (100) after Ar Gas Cluster Ion Beam (GCIB) sputtering was investigated using X-ray photoemission spectroscopy and compared with those obtained via mono-atomic Ar ion beam sputtering. The Ar ion sputtering had a great deal of influence on the electronic structure of the oxide thin film. Ar GCIB sputtering without sample rotation also affected the electronic structure of the oxide thin film. However, Ar GCIB sputtering during sample rotation did not exhibit any significant transition of the electronic structure of the $Ta_2O_5$ thin films. Our results showed that Ar GCIB can be useful for potential applications of oxide materials with sample rotation.

  • PDF

전자구조 및 화학적 물성 변화에 따른 InGaZnO 박막 트랜지스터의 소자 특성 연구

  • Kim, Bu-Gyeong;Park, Hyeon-U;Jeong, Gwon-Beom
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.334.2-334.2
    • /
    • 2014
  • 본 연구에서는 a-InGaZnO (IGZO) 활성층에 대기분위기에서 열처리 온도를 각각 $150^{\circ}C$, $250^{\circ}C$, $350^{\circ}C$ 실시하여 전자구조와 광학적 특성분석 및 화학적 결합 상태의 변화를 알아보고, 이러한 물성 변화에 따른 소자의 특성을 알아 보았다. 박막 트랜지스터 소자의 전기적 특성은, IGZO 박막에 후 열처리 공정온도 후 제작한 박막 트랜지스터는 $150^{\circ}C$에서 3.1 cm2/Vs의 전계 효과 이동도와 0.38 V/decade의 문턱전압 이하 기울기를 보였으나, $350^{\circ}C$에서는 8.8 cm2/Vs의 전계 효과 이동도와 0.20 V/decade의 문턱전압 이하 기울기로 더 향상된 박막 트랜지스터의 전기적 특성 결과를 관측하였다. 전기적 소자 특성의 변화와 활성층 IGZO 박막 특성 변화와의 상관관계를 조사하기 위하여 X-ray Absorption Spectroscopy (XAS)과 Spectroscopy Ellipsometry (SE)로 측정된 흡수 스펙트럼을 통하여 3 eV 이상의 광학적 밴드 갭은 기존에 보고 되었던 a-IGZO와 유사한 특성을 보이고 있음을 확인하였고, 이러한 측정, 분석법들을 통해 후 열처리 공정 온도에 따른 밴드 갭 부근의 결함준위의 양 변화와 가전자대의 전자구조의 변화에 따라 전기적 특성이 달라짐을 확인 할 수 있었다. 또한, X-ray Photoemission Spectroscopy (XPS)를 통해 측정한 O-1s를 통해 Oxygen deficient state와 밴드 갭 부근의 결함준위와의 상관관계를 도출해낼 수 있었다. 이는 a-IGZO 활성층에 후 열처리 공정 온도 변화에 따라서 전자구조의 혼성변화와 밴드 갭 부근의 결함준위의 양의 변화, 에너지 준위의 변화 및 이와 연관된 화학적 상태 변화가 박막 트랜지스터의 특성 변화를 예상할 수 있다는 결과를 도출하였다.

  • PDF

The Materials Science of Chalcopyrite Materials for Solar Cell Applications

  • Rockett, Angus
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.53-53
    • /
    • 2011
  • This paper describes results for surface and bulk characterization of the most promising thin film solar cell material for high performance devices, (Ag,Cu) (In,Ga) Se2 (ACIGS). This material in particular exhibits a range of exotic behaviors. The surface and general materials science of the material also has direct implications for the operation of solar cells based upon it. Some of the techniques and results described will include scanning probe (AFM, STM, KPFM) measurements of epitaxial films of different surface orientations, photoelectron spectroscopy and inverse photoemission, Auger electron spectroscopy, and more. Bulk measurements are included as support for the surface measurements such as cathodoluminescence imaging around grain boundaries and showing surface recombination effects, and transmission electron microscopy to verify the surface growth behaviors to be equilibrium rather than kinetic phenomena. The results show that the polar close packed surface of CIGS is the lowest energy surface by far. This surface is expected to be reconstructed to eliminate the surface charge. However, the AgInSe2 compound has yielded excellent atomic-resolution images of the surface with no evidence of surface reconstruction. Similar imaging of CuInSe2 has proven more difficult and no atomic resolution images have been obtained, although current imaging tunneling spectroscopy images show electronic structure variations on the atomic scale. A discussion of the reasons why this may be the case is given. The surface composition and grain boundary compositions match the bulk chemistry exactly in as-grow films. However, the deposition of the heterojunction forming the device alters this chemistry, leading to a strongly n-type surface. This also directly explains unpinning of the Fermi level and the operation of the resulting devices when heterojunctions are formed with the CIGS. These results are linked to device performance through simulation of the characteristic operating behaviors of the cells using models developed in my laboratory.

  • PDF

ARPES Study of Quasi-Two Dimensional CDW System CeTe2 (준이차원 전하밀도파 CeTe2의 각분해 광전자 분광 연구)

  • Kim, D.H.;Lee, H.J.;Kang, J.S.;Kim, H.D.;Min, B.H.;Kwon, Y.S.;Kim, J.W.;Min, B.I.
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.5
    • /
    • pp.173-177
    • /
    • 2010
  • The electronic structure of charge-density-wave (CDW) system $CeTe_2$ has been investigated by using angle-resolved photoemission spectroscopy (ARPES). The clearly dispersive band structures are observed in the measured ARPES spectra, indicating the good quality of the single-crystalline sample employed in this study. The four-fold symmetric patterns are observed in the constant energy (CE) mappings, indicating the $2{\times}2$ lattice deformation in the Te(1) sheets. The observed CE images are similar to those of $LaTe_2$, suggesting that Ce 4f states have the minor contribution to the CDW formation in $CeTe_2$. This study reveals that the carriers near the Fermi level should have mainly the Te(1) 5p and Ce 5d character, that the Te(1) 5p bands contribute to the CDW formation, and that the Ce 5d bands cross the Fermi level even in the CDW state.

Improved Electrical Properties by In Situ Nitrogen Incorporation during Atomic Layer Deposition of HfO2 on Ge Substrate (Ge 기판 위에 HfO2 게이트 산화물의 원자층 증착 중 In Situ 질소 혼입에 의한 전기적 특성 변화)

  • Kim, Woo-Hee;Kim, Bum-Soo;Kim, Hyung-Jun
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.1
    • /
    • pp.14-21
    • /
    • 2010
  • Ge is one of the attractive channel materials for the next generation high speed metal oxide semiconductor field effect transistors (MOSFETs) due to its higher carrier mobility than Si. But the absence of a chemically stable thermal oxide has been the main obstacle hindering the use of Ge channels in MOS devices. Especially, the fabrication of gate oxide on Ge with high quality interface is essential requirement. In this study, $HfO_xN_y$ thin films were prepared by plasma-enhanced atomic layer deposition on Ge substrate. The nitrogen was incorporated in situ during PE-ALD by using the mixture of nitrogen and oxygen plasma as a reactant. The effects of nitrogen to oxygen gas ratio were studied focusing on the improvements on the electrical and interface properties. When the nitrogen to oxygen gas flow ratio was 1, we obtained good quality with 10% EOT reduction. Additional analysis techniques including X-ray photoemission spectroscopy and high resolution transmission electron microscopy were used for chemical and microstructural analysis.

Electronic Structures of Co-Pd Alloy Films Using Synchrotron Radiation Photoemission Spectroscopy (방사광 광전자 분광법을 이용한 Co-Pd 합금박막의 전자구조 연구)

  • 강정수;권세균;하양장;민병일;조용필;이창섭;정인범;구양모;김건호
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.6
    • /
    • pp.405-410
    • /
    • 1996
  • Valence band photoemission spectroscopy (PES) measurements have been performed for $Co_{x}Pd_{100-x}$ alloy films using synchrotron radiation (x = 0, 25, 40, 65). Then the partial spectral weight distributions (PSW's) of Co 3d and Pd 4d electrons have been determined. The Co 3d PSW's exhibit some structures which are quite different from those of the Co film for x < 25 %, whereas they become very similar to those of the Co film for x > 40 %. For x < 25 %, the peak near the Fermi level ($E_F$) and a shoulder around 2 eV binding energy in the Co 3d PSW reflect large hybridization between Pd 4d and Co 3d electrons, suggesting that the hybridization might play an inportant role in determining perpendicualr magnetic anisotropy. The Pd 4d PSW's in Co-Pd alloy films are found to have larger FWHM's (full widths at half maximum), larger binding energies of the main peaks, and larger spectral intensities at $E_F$ than the PES spectrum of the Pd film. The FWHM of the Pd 4d PSW increases with decreasing Pd concentration, which are considered to reflect the disordering effect in the alloy formation or the change in the Pd 4d electronic structure due to hybridization between Co 3d and Pd 4d electrons.

  • PDF

Mössbauer Study of Crystallographic and Magnetic Properties in Vanadium Ferrite(VxFe3-xO4) Thin Films (바나듐 페라이트 박막의 결정구조 및 자기적 성질에 관한 뫼스바우어 분광학적 연구)

  • Park, Jae-Yun;Kim, Kwang-Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.1
    • /
    • pp.19-23
    • /
    • 2008
  • The mixed ferrite $V_xFe_{3-x}O_4$(x=0.0, 0.15, 0.5, 1.0) thin films were prepared by sol-gel method. Their crystallographic and magnetic hyperfine properties have been studied using X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and conversion electron $M\"{o}ssbauer$ spectroscopy(CEMS). The crystal structure is found to be cubic spinel throughout the series($x{\leq}1.0$), and the lattice parameter $a_0$ increases linearly with increasing V content. XRD, XSP and CEMS indicate that $V^{3+}$ substitution for $Fe^{3+}$ in B-site is superior to $V^{2+}$ substitution for $Fe^{2+}$ in B-site. It is noticeable that both quadrupole shift and hyperfine field decreases with increasing V composition, suggesting the change of local symmetry and accompanying line-broadening. The line-broadening on CEMS spectra can be explained by the distribution of magnetic hyperfine fields.

Synthesis and Catalytic Characteristics of Thermally Stable TiO2/Pt/SiO2 Hybrid Nanocatalysts (고온에서 안정적인 TiO2/Pt/SiO2 하이브리드 나노촉매의 제작 및 촉매 특성)

  • Reddy, A. Satyanarayana;Jung, Chan-Ho;Kim, Sun-Mi;Yun, Jung-Yeul;Park, Jeong-Young
    • Journal of Powder Materials
    • /
    • v.18 no.6
    • /
    • pp.532-537
    • /
    • 2011
  • Thermally stable $TiO_2$/Pt/$SiO_2$ core-shell nanocatalyst has been synthesized by chemical processes. Citrated capped Pt nanoparticles were deposited on amine functionalized silica produced by Stober process. Ultrathin layer of titania was coated on Pt/$SiO_2$ for preventing sintering of the metal nanoparticles at high temperatures. Thermal stability of the metal-oxide hybrid catalyst was demonstrated heating the sample up to $600^{\circ}C$ in air and by investigating the morphology and integrity of the structure by transmission electron spectroscopy. The surface analysis of the constituent elements was performed by X-ray photoemission spectroscopy. The catalytic activity of the hybrid catalysts was investigated by CO oxidation reaction with oxygen as a model reaction.