• 제목/요약/키워드: photocycle

검색결과 17건 처리시간 0.022초

Photochemistry of pharaonis phoborhodopsin and its interaction with the transducer

  • Kamo, Naoki;Shimono, Kazumi;Iwamoto, Masayuki;Sudo, Yuki;Yoshida, Hideaki
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.102-105
    • /
    • 2002
  • Phoborhodopsin (pR or sensory rhodopsin II, sRII; the absorption maximum of ∼ 500 nm) is a retinoid protein and works as a photoreceptor of the negative phototaxis of Halobacterium salinarum. pharaonis phoborhodopsin (ppR or pharaonis sensory rhodopsin II, psRII) is a corresponding protein of Natronobacterium pharaonis. These sensory proteins form a complex with a cognate transducer protein in the membrane, and this complex transmits the light-signal to the cytoplasm to evoke avoidance reaction from blue-green light. Recently, the functional expression in Escherichia coli membrane of ppR was achieved, which can afford a large amount of the protein and enables mutant studies to clarify the role of various amino acid residues. A truncated transducer which can bind to ppR is also expressed in Escherichia. coli membrane. In this article, we will review properties of ppR mainly using observations of our laboratory; which contains photochemistry (photocycle), light-driven proton uptake, release and transport, F -helix titling during photocycle and association of the transducer.

  • PDF

박테리아로돕신의 광순환 특성을 이용한 광학적 논리회로 구현 (Realization of optical logic gates using photocycle properties of bacteriorhodopsin)

  • 오세권;유연석
    • 한국광학회지
    • /
    • 제13권5호
    • /
    • pp.414-420
    • /
    • 2002
  • 본 연구에서는 bacteriorhodopsin(bR)이 첨가된 고분자 박막을 이용하여 광 논리회로 특성을 구현하였다. bR은 분광학적으로 구분되는 몇 단계의 중간단계로 구성된 복잡한 참순환 과정을 수반하고 있다. 우리는 bR의 광순환 과정중 B상태와 M상태의 흡수도 변화를 고려하여 He-Ne 레이저(632.8 nm)와 He-Cd 레이저(413 nm) 이용하여 광학적 논리회로를 구현하였다. 또한 B상태와 K상태간의 흡수 스펙트럼을 고려하여 He-Ne 레이저(632.8 nm)와 Nd-YAG 레이저의 제2고조파인 532 nm를 이용하여 고속 AND logic gate를 구현하였다.

The Effect of S130A Mutant of pharaonis Halorhodopsin on Ability of Chloride Binding and Photocycle

  • Sato, Maki;Kikukawa, Takashi;Araiso, Tsunehisa;Okita, Hirotaka;Shimono, Kazumi;Kamo, Naoki;Demura, Makoto;Nitta, Katsutoshi
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.308-310
    • /
    • 2002
  • Bacteriorhodopsin (bR) and halorhodopsin (hR), which exist in the membrane of Halobacterium salinarum, are light-driven ion pumps. In spite of high similarity of primary and tertiary structures between bR and hR, these membrane proteins transport different ions, proton and chloride, in the opposite direction. From alignment of the amino acid sequences, Thr-89 of bR is homologous to Ser-l15 of hR from Halobacterium salinarum (shR). X-ray structure of shR has revealed that OH group of this residue directly interacts with CI$\^$-/ Thus, Ser-lI5 of shR is expected to play an important role in CI$\^$-/ binding and transport. In this study, we expressed wild type hR from Natronobacterium pharaonis (PhR) and Sl30A, which corresponds to Ser-l15 of shR, in E. coli in order to clarify binding affinity of chloride ion and photocycle reactions. From the titration with CI$\^$-/, affinity of Sl30A became quite lower than that of WT (WT 6 mM, Sl30A 89 mM). Furthermore, from the flash photolysis with pulse laser of λ$\_$max/ at 532 nm, the reaction rate of SI30A from 0 intermediate to hR ground state was found to become apparently slower than that of WT. The singular value decomposition (SVD) and global fitting analyses of the photocycles were performed to identify all photointermediates and determine the reaction rates.

  • PDF

Structure and Photoreaction of Photoactive Yellow Protein

  • Imamoto, Yasushi;Harigai, Miki;Shimizu, Nobutaka;Kamikubo, Hironari;Yamazaki, Yoichi;Kataoka, Mikio
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.126-129
    • /
    • 2002
  • The chromophore/protein interactions in the photocycle intermediates of photoactive yel- low protein (PYP) were probed by site-directed mutagenesis. The absorption spectra of L- intermediates produced from E46Q, T50V, and R52Q mutants were calculated using the absorption spectra of dark states and difference absorption spectra between L-intermediates and dark states, and compared with that of PYP$\_$L/. The absorption spectrum of R52Q$\_$L/ agreed with that of PYP$\_$L/, but those of E46Q$\_$L/ and T50V$\_$L/ were red-shifted. The effect of these mutations on the absorption spectrum for L-intermediate was comparable to that for the dark state, suggesting that the interaction around the phe-nolic oxygen of the chromophore is conserved in PYP$\_$L/ unlike the crystal structure. On the other hand, we have reported that the absorption spectra of Y 42F$\_$M/, T50V $\_$M/, and R52Q$\_$M/ agreed with that of PYP$\_$M/, but that of E46Q$\_$M/ was red-shifted, suggesting that the hydrogen bond of the chromophore with Glu46 is conserved but that with Tyr42 is broken in PYP$\_$M/. These results suggest that the chromophore inter-acts with Glu46 throughout the photocycle, but never directly interacts with Arg52. This model con- flicts with some of the structural model of PYP intermediates proposed based on the high-resolution X -ray crystallography.

  • PDF

근접장 마이크로파 현미경을 이용한 로돕신의 광학적 특성 연구 (Optical Characterization of Sensory Rhodopsin II Thin Films using a Near-field Scanning Microwave Microscope)

  • 유경선;김송희;윤영운;이기진;이정하;최아름;정광환
    • 한국전기전자재료학회논문지
    • /
    • 제20권1호
    • /
    • pp.80-85
    • /
    • 2007
  • We report the electro-optical properties of the sensory rhodopsin II using a near-field scanning microwave microscope(NSMM). Rhodopsin was known as a photoreceptor pigment with a retinal as a chromophore via a protonated Schiff base and consists of seven ${\alpha}-helical$ transmembrane segments. The sensory rhodopsin II, expressing E. coli UT5600 with endogenous retinal biosynthesis system and purified with $Ni^{-2}-NTA$ affinity chromatography in the presence of 0.02 % DM (Dodecyl Maltoside) from Natronomonas pharaonis. We measured the absorption spectra and the transients difference of sensory rhodopsin II from Natronomonas pharaonis using a UV/VIS spectrophotometer with Nd-Yag Laser (532 nm). The absorption spectra of NpSR II showed a typical rhodopsin spectrum with a left shoulder region and the photointermediates spectra of NpSR II-ground state (${\lambda}max=498\;nm$), NpSR II-M state (${\lambda}max=390\;nm$), and NpSR II-O state (${\lambda}max=550\;nm$) during the photocycle. The observed photocycle reaction was confirmed by measuring the microwave reflection coefficient $S_{11}$ at an operating frequency of f=3.93-3.95 GHz and compared with the results of a photocycle of NpSR II.

The rate-determining step in the dark state recovery process in the photocycle of PYP

  • Sasaki, Jun;Kumauchi, Masato;Hamada, Norio;Tokunaga, Fumio
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.130-133
    • /
    • 2002
  • The last step in the photocycle of photoactive yellow protein (PYP) is a spontaneous recovery of the dark state from the active state in which the p-coumaric acid chromophore is thermally isomerized, concomitantly with the deprotona- tion of the chtomophore and the refolding of the protein moicty. For the purpose of understanding the mechanism of the thermal back-isomerization, we have investigated the rate-determining step by analyzing mutant PYPs of Met100, which was previously shown to play a major role in facilitating the reaction (1). The mutation to Lys, Leu, Ala, or Glu decelerated the dark state recovery by 1 to 3 three orders of magnitude. By evaluating temperature-dependence and pH-dependence of the kinetics of the dark state recovery, it was found that the retardation by mutations resulted from elevation of the activation enthalpy ( H$\^$┿/) and that the pKa of the chromophore, which was affected by the mutation, is in a linier correlation with the amplitude of the rate constants. It was, therefore, deduced from the correlation that the free energy for crossing the activated state in the dark recovery process is proportional to the free energy for the deprotonation of the chromophore, identifying the rate-determining step as the deprotonation of the chromophore. (1) Devanathan, S. Genick, U. K. Canestrelli, I. L. Meyer, T. E. Cusanovich, M. A. Getzoff, E. D. Tollin, G., Biochemistry 1998, 37, 11563 - 11568

  • PDF

PROTEIN CONFORMATIONS OF OCTOPUS RHODOPSIN AND ITS DEPROTONATED PHOTOCYCLE INTERMEDIATE MONITORED BY ABSORPTION AND PROTEIN FLUORESCENCE

  • Jang, Du-Jeon;Lee, SunBae
    • Journal of Photoscience
    • /
    • 제2권1호
    • /
    • pp.19-25
    • /
    • 1995
  • Picosecond time-resolved and static protein fluorescence spectra and absorption spectra of octopus rhodopsin, a photorecepting protein, are measured and compared with those of bacteriorhodopsin, a photon-induced proton pumping protein, to understand the protein conformations and functions of octopus rhodopsin and its deprotonated photocycle intermediate. The bluer and weaker absorption of retinal indicates that octopus rhodopsin is better in thermal noise suppression but less efficient in light harvesting than bacteriorhodopsin. The protein fluorescence of octopus rhodopsin shows the characteristic of Trp only and the uantum efficiency and lifetime variations may result primarily from variations in the coupling strength with the retinal. The stronger intensity by four times and larger red shift by 12 nm of fluorescence suggest that octopus rhodopsin has more open and looser structure compared with bacteriorhodopsin. Fluorescence decay profiles reveal two decay components of 300 ps (60%) and 2 ns (40%). The deprotonation of protonated Schiff's base increases the shorter decay time to 500 ps and enhances the fluorescence intensity by 20%. The fluorescence and its decay time from Trp residues near retinal are influenced more by the deprotonation. The increase of fluorescence intimates that protein structure becomes loosened and relaxed further by the deprotonation of protonated Schiff's base. The driving force of sequential changes initiated by absorption of a photon is too exhausted after the deprotonation to return the intermediate to the ground state of the begun rhodopsin form.

  • PDF

HYDRATION DEPENDENCE OF DRIED ORIENTED PURPLE MEMBRANE FILMS ACTIVITY

  • Lee, Ki-Hwan;Boucher, Francois;McIntosh, Alan R.
    • Journal of Photoscience
    • /
    • 제2권2호
    • /
    • pp.69-72
    • /
    • 1995
  • Dry orderly oriented purple membrane from Halobacterium halobium was obtained by a new technique of preparation. This oriented purple membrane film was very stable, nearly permanently, and showed long term reproducibility with respect to its photochemical behavior. In addition, we have investigated the photooptical properties in terms of the M$_{412}$ intermediate of the bacteriorhodopsin photocycle with respect to the humidity of the film. The relative optical density, i.e. its apparent concentration of the M$_{412}$ intermediate was decreased with the humidity increase as a function of the intensity of the exciting flash within our experimental range. It is suggested that the bound water molecules play an important role in the structure of the bacteriorhodopsin.

  • PDF

Molecular Dynamics of the M intermediate of photoactive yellow protein in solution

  • Sakurai, Minoru;Shiozawa, Mariko;Arai, Shohei;Inoue, Yoshio;Kamiya, Narutoshi;Higo, Junichi
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.134-137
    • /
    • 2002
  • PYP consists of a water-soluble apoprotein and 4-hydroxycinnamyl chromophore bound to Cys69 via thiolester linkage, Upon absorption of a photon, the photocycle is initiated, leading to formation of several photo-intermediates. Among them, M intermediate is important to understand the signal transduction mechanism of PYP, because it is a putative signaling state. As well known, the dynamics of a protein is closely correlated with the occurrence of its function. Here we report the results of IO ns molecular dynamics (MD) simulation for the M intermediate in aqueous solution and discuss the characteristic feature of this state from a viewpoint of structural fluctuation.

  • PDF

Color Sensing and Signal Transmission Diversity of Cyanobacterial Phytochromes and Cyanobacteriochromes

  • Villafani, Yvette;Yang, Hee Wook;Park, Youn-Il
    • Molecules and Cells
    • /
    • 제43권6호
    • /
    • pp.509-516
    • /
    • 2020
  • To perceive fluctuations in light quality, quantity, and timing, higher plants have evolved diverse photoreceptors including UVR8 (a UV-B photoreceptor), cryptochromes, phototropins, and phytochromes (Phys). In contrast to plants, prokaryotic oxygen-evolving photosynthetic organisms, cyanobacteria, rely mostly on bilin-based photoreceptors, namely, cyanobacterial phytochromes (Cphs) and cyanobacteriochromes (CBCRs), which exhibit structural and functional differences compared with plant Phys. CBCRs comprise varying numbers of light sensing domains with diverse color-tuning mechanisms and signal transmission pathways, allowing cyanobacteria to respond to UV-A, visible, and far-red lights. Recent genomic surveys of filamentous cyanobacteria revealed novel CBCRs with broader chromophore-binding specificity and photocycle protochromicity. Furthermore, a novel Cph lineage has been identified that absorbs blue-violet/yellow-orange light. In this minireview, we briefly discuss the diversity in color sensing and signal transmission mechanisms of Cphs and CBCRs, along with their potential utility in the field of optogenetics.