DOI QR코드

DOI QR Code

Optical Characterization of Sensory Rhodopsin II Thin Films using a Near-field Scanning Microwave Microscope

근접장 마이크로파 현미경을 이용한 로돕신의 광학적 특성 연구

  • 유경선 (서강대학교 물리학과 바이오융합협동과정) ;
  • 김송희 (서강대학교 물리학과 바이오융합협동과정) ;
  • 윤영운 (서강대학교 물리학과 바이오융합협동과정) ;
  • 이기진 (서강대학교 물리학과 바이오융합협동과정) ;
  • 이정하 (서강대학교 생명과학과 바이오융합협동과정) ;
  • 최아름 (서강대학교 생명과학과 바이오융합협동과정) ;
  • 정광환 (서강대학교 생명과학과 바이오융합협동과정)
  • Published : 2007.01.01

Abstract

We report the electro-optical properties of the sensory rhodopsin II using a near-field scanning microwave microscope(NSMM). Rhodopsin was known as a photoreceptor pigment with a retinal as a chromophore via a protonated Schiff base and consists of seven ${\alpha}-helical$ transmembrane segments. The sensory rhodopsin II, expressing E. coli UT5600 with endogenous retinal biosynthesis system and purified with $Ni^{-2}-NTA$ affinity chromatography in the presence of 0.02 % DM (Dodecyl Maltoside) from Natronomonas pharaonis. We measured the absorption spectra and the transients difference of sensory rhodopsin II from Natronomonas pharaonis using a UV/VIS spectrophotometer with Nd-Yag Laser (532 nm). The absorption spectra of NpSR II showed a typical rhodopsin spectrum with a left shoulder region and the photointermediates spectra of NpSR II-ground state (${\lambda}max=498\;nm$), NpSR II-M state (${\lambda}max=390\;nm$), and NpSR II-O state (${\lambda}max=550\;nm$) during the photocycle. The observed photocycle reaction was confirmed by measuring the microwave reflection coefficient $S_{11}$ at an operating frequency of f=3.93-3.95 GHz and compared with the results of a photocycle of NpSR II.

Keywords

References

  1. J. L. Spudich, C. S. Yang, K. H. lung, and E. N. Spudich, 'Retinylidene proteins: Structures and functions from Archaea to humans', Annu. Rev. Cell Dev. BioI., Vol. 16, p. 365, 2002
  2. J. L. Spudich and K. H. Jung, 'Microbial rhodopsins: Phylogenetic and functional diversity', eds Briggs, WR and Spudich JL, Handbook of Photosensory Receptors. Wiley-VCH Press, Weinheim, Germany, p. 1, 2005
  3. E. R. S. Kunji, E. N. Spudich, R. Grisshammer, R. Henderson, and J. L. Spudich, 'Electron crystallographic analysis of two-dimensional crystals of sensory rhodopsin II: A 6.9 A projection structure', J. Mol. BioI., Vol. 308, p. 279, 2001 https://doi.org/10.1006/jmbi.2001.4565
  4. J. Sasaki and J. L. Spudich, 'Proton transport by sensory rhodopsins and its modulation by transducer-binding', Biochim. Biophys. Acta, Vol. 1460, p. 230, 2000 https://doi.org/10.1016/S0005-2728(00)00142-0
  5. C. H. Sikorsi and U. Merkt, 'Spectroscopy of electronic states in InSb quantum dots', Phys. Rev Lett., Vol. 62, p. 2164, 1989 https://doi.org/10.1103/PhysRevLett.62.2164
  6. C. Gao and X.-D. Xiang, 'Quantitative microwave near-field microscopy of dielectric properties', Rev. Sci. Instrum., Vol. 69 p. 3846, 1998 https://doi.org/10.1063/1.1149189
  7. E. Hecht, 'Optics', Addison-Wesley, 1987
  8. J. Kim, M. Kim, H. Kim, D. Song, K. Lee, and B. Friedman, 'The study of near-field scanning microwave microscope for the nondestructive detection system', Appl. Phys. Letts., Vol. 83, p. 1026, 2003 https://doi.org/10.1063/1.1595134
  9. D. Kajfez and P. Guillon, 'Dielectric resonators', Noble publishing Co., Atlanta, 1998
  10. Gabriel M. Rebeiz, 'RF MEMS theory, design, and technology', Wiley-Interscience, 2003
  11. J. Kim, M. Kim, H. Kim, D. Song, B. Friedman, and K. Lee, 'Improving images form a near-field scanning microwave microscope using a hybrid probe', Appl. Phys. Lett., Vol. 83, p. 1026, 2003 https://doi.org/10.1063/1.1595134
  12. J. Kim, S. Kim, H. Yoo, J. Yang, H. Yoo, K. Yu, S. Kim, and K. Lee, 'The study of near-field scanning microwave microscope for the nondestructive detection system', Journal of the Korean Society for Nondestructive Testing, Vol. 24, No.5, 2004
  13. H. Goldstein 'Classical mechanics', Addision-Wesley, 1986
  14. S. Kim, H. Yoo, K. Lee, and B. Friedman, 'Distance control for a near-field scanning microwave microscope in liquid using a quartz tuning fork', Appl. Phys. Letts., Vol. 86, p. 153506, 2005 https://doi.org/10.1063/1.1904713
  15. M. Koopman, B. I. de Bakker, M. F. Garcia-Parajo, and N. F. van Hulst, 'Shear force imaging of soft samples in liquid using a diving bell concept', Appl. Phys. Lett., Vol. 83, No. 24, p. 5083, 2003 https://doi.org/10.1063/1.1634385
  16. W. H. J. Rensen, N. F. van Hulst, and S. B. Kmmer, 'Imaging soft samples in liquid with tuning fork based shear force microscopy', Appl. Phys. Lett., Vol. 77, p. 1557, 2000 https://doi.org/10.1063/1.1308058
  17. http://www.citizen.co.jp/english/crystal/index.html
  18. K. Karrai and R. D. Grober, 'Piezoelectric tip-sample distance control for near field optical microscopes', Appl. Phys, Lett., Vol. 66, p. 1842, 1995 https://doi.org/10.1063/1.113340