• 제목/요약/키워드: photochemical

검색결과 828건 처리시간 0.035초

Photochemical Reduction of 1,2-Diketones in the Presence of $TiO_2$

  • 박준우;홍미정;고박광희
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권11호
    • /
    • pp.1213-1216
    • /
    • 2001
  • 1,2-Diketones, camphorquinone and 1-phenyl-1,2-propanedione, are converted to the corresponding $\alpha-hydroxyketones$ in moderate to good yields by TiO2-catalyzed photochemical reactions in deoxygenated alcoholic media. The reduction yield for 1-phenyl-1,2-propanedione is considerably increased by addition of water or triethylamine

Characteristic Distributions of Hydrogen Peroxide and Methyl Hydroperoxide and over the North Pacific Ocean

  • Lee, Meehye;Brian G. Heikes
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제18권E2호
    • /
    • pp.85-95
    • /
    • 2002
  • Hydrogen peroxide and methyl hydroperoxide were measured over the northwestern Pacific Ocean during NASA's PEM (Pacific Exploratory Mission) -West. The first experiment (PEM -West A) was conducted in the fall of 1991 and PEM-West B in the early spring of 1994. Hydroperoxide data were obtained on board the NASA DC -8 aircraft through the entire depth of the troposphere. Average concentrations of both H$_2$O$_2$and CH$_3$OOH were higher during PEM -West A than B. The seasonal difference in hydroperoxide distribution was determined by the degree of photochemical activities and the strength and location of jetstream, which led to extensive and rapid continental outflow during the PEM-West B. While for H$_2$O$_2$distribution, a longitudinal gradient was more apparent than a latitudinal gradient, it was opposite for the CH$_3$OOH distribution. The longitudinal gradient indicates the proximity to the anthropogenic sources from the Asian continent, but the latitudinal gradient reflects photochemical activity. During PEM -West B, the ratio of C$_2$H$_2$/CO, a tracer for continental emission was raised and high concentrations of H$_2$O$_2$were associated with high ratios. The flux of hydroperoxide toward the North Pacific was also enhanced in the early spring. The eastward fluxes of H$_2$O$_2$ were 9% and 17% of the average photochemical production over the Pacific Basin between 140°E and 130°W during PEM-West A and B, respectively. For CH$_3$OOH, these ratios were 8% and 13%. Considering the lifetime of hydroperoxide and the rapid transport of pollutants, the export of hydroperoxide with other oxidants would have a significant influence on oxidant cycles over the North Pacific during winter/spring.

항공관측자료를 이용한 2006년 멕시코시티 주변 기류의 물리-화학적 성질에 따른 오존의 광화학적 특성 연구 (A Study of Ozone Photochemistry in Different Physico-chemical Properties of Air Masses around the Mexico City Metropolitan Area (MCMA) Using Aircraft Observations in 2006)

  • 송상근;손장호;김유근
    • 한국대기환경학회지
    • /
    • 제26권2호
    • /
    • pp.118-136
    • /
    • 2010
  • Photochemical characteristics of ozone ($O_3$) and its precursors such as $O_3$ budget and $O_3-NO_x$-VOC sensitivity were analyzed in different physico-chemical properties of air masses around the Mexico City Metropolitan Area (MCMA) using aircraft observations during March 2006. The physico-chemical properties of air masses were categorized into 5 groups: boundary layer (BL), biomass burning (BB), free tropospheric continent (FTCO) and marine (FTMA), and Tula industrial complex (TIC). Results from the $O_3$ budget analysis indicated that $O_3$ production for BL, FTCO, and FTMA (for BB and TIC) was mainly controlled by a photochemical production pathway, a reaction of NO with $HO_2$ (with $RO_2$), while the main pathway of photochemical $O_3$ destruction for BL, FTCO, and FTMA (for BB and TIC) was a reaction of $HO_2$ with $O_3$ (of $H_2$ with $O^1$(D)). In addition, most of air mass categories (especially FTCO) were estimated to be $NO_x$-sensitive for $O_3$ production with lower $NO_y$, higher ratios of the other indicator species (e.g., $O_3/(NO_y-NO_x$), $H_2O_2/HNO_3$, etc.), and the lower removal rate of radicals ($\leq$0.5) by the reaction of OH with $NO_2$ than those of the VOC-sensitive condition.

차광처리에 따른 수리취의 광합성 관련 특성 변화 (Changes of Characteristics Related to Photosynthesis in Synurus deltoides under Different Shading Treatments)

  • 이경철;노희선;김종환;안수용;한상섭
    • 한국약용작물학회지
    • /
    • 제20권5호
    • /
    • pp.320-330
    • /
    • 2012
  • This study was conducted to investigate the changes of chlorophyll contents, chlorophyll fluorescence, photosynthetic parameters, and leaf growth of Synurus deltoides under different shading treatments. S. deltoides was grown under non-treated (full sunlight) and three different shading conditions (Shaded 88~93%, 65~75%, and 45%~55%). Light compensation point ($L_{comp}$), dark respiration ($D_{resp}$), maximum photosynthesis rate ($Pn_{max}$), photo respiration rate ($P_{resp}$), carboxylation efficiency ($\Phi_{carb}$), and photochemical efficiency were decreased with increasing shading level; However, $CO_2$ compensation point ($CO_{2\;comp}$), total chlorophyll content, and specific leaf area (SLA) were shown the opposite trend. S. deltoides under 88~93% treatment showed the lowest photosynthetic activity such as maximum photosynthetic rate ($Pn_{max}$), photochemical efficiency, and $CO_2$ compensation point ($CO_{2\;comp}$). Therefore, photosynthetic activity will be sharply decreased with a long period of 8~12% of full sunlight. With the shading level decreased, carotenoid content and non-photochemical fluorescence quenching (NPQ) increased to prevent excessive light damage. This result suggested that growth and physiology of S. deltoides adapted to high light intensity through regulating its internal mechanism.

Photochemical assessment of maize (Zea mays L.) seedlings grown under water stress using photophenomics technique

  • Ham, Hyun Don;Kim, Tea Seong;Yoo, Sung Yung;Park, Ki Bae;Kim, Tae Wan
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.341-341
    • /
    • 2017
  • Abiotic stress adversely affects crop growth worldwide. Drought of the major abiotic stresses have the most significant impact on all of the crop. The main objective of this study was to assess the effects of drought stress on photochemical performance and vitality of maize (Zea mays L.). The photochemical characteristics were analyzed in the context of period of drought stress during the maize growth. Drought experiment was carried out for four weeks, thereafter, the drought treated maize was re-watered. The polyphasic OJIP fluorescence transient was used to evaluate the behavior of photosystem II (PSII) and photosystem I (PSI) during the entire experiment period. In drought stress, the performance Index (PI) level was reached earlier when compared to the controls. For the screening of drought stress tolerance the drought factor index (DFI) of each variety was calculated as follow DFI= log(A) + 2log(B). All the fourteen cultivars show DFI ranged from -0.69 to 0.30, meaning less useful in selection of drought tolerant cultivars. PI and electron transport flux values of fourteen cultivars were to indicate reduction of photosynthetic performance during the early vegetative stage under drought stress. In conclusion, DFI and energy flux parameters can be used as photochemical and physiological index.

  • PDF

광화학적 방법을 통한 InP계 양자점 표면결함 부동태화 연구 (Study on Surface-defect Passivation of InP System Quantum Dots by Photochemical Method)

  • 김도연;박현수;조혜미;김범성;김우병
    • 한국분말재료학회지
    • /
    • 제24권6호
    • /
    • pp.489-493
    • /
    • 2017
  • In this study, the surface passivation process for InP-based quantum dots (QDs) is investigated. Surface coating is performed with poly(methylmethacrylate) (PMMA) and thioglycolic acid. The quantum yield (QY) of a PMMA-coated sample slightly increases by approximately 1.3% relative to that of the as-synthesized InP/ZnS QDs. The QYs of the uncoated and PMMA-coated samples drastically decrease after 16 days because of the high defect state density of the InP-based QDs. PMMA does not have a significant effect on the defect passivation. Thioglycolic acid is investigated in this study for the effective surface passivation of InP-based QDs. Surface passivation with thioglycolic acid is more effective than that with the PMMA coating, and the QY increases from 1.7% to 11.3%. ZnS formed on the surface of the InP QDs and S in thioglycolic acid show strong bonding property. Additionally, the QY is further increased up to 21.0% by the photochemical reaction. Electron-hole pairs are formed by light irradiation and lead to strong bonding between the inorganic and thioglycolic acid sulfur. The surface of the InP core QDs, which does not emit light, is passivated by the irradiated light and emits green light after the photochemical reaction.

자외선-B 스트레스에 대한 담배 잎의 광합성 능의 변화 (Effects of Ultraviolet-B Radiation on Photosynthesis in Tobacco (Nicotiana tabacum cv. Petit Havana SR1) Leaves)

  • 이혜연;박연일;홍영남
    • 한국환경농학회지
    • /
    • 제26권3호
    • /
    • pp.239-245
    • /
    • 2007
  • The effect of ultraviolet-B (UV-B) radiation on photosynthesis was studied by the simultaneous measurements of $O_2$ evolution and chlorophyll (Chl) fluorescence in tobacco leaves. When the tobacco leaves were teated with UV-B (1 $W{\cdot}m^{-2}$), the maximal photosynthetic $O_2$, evolution (Pmax; 4.60 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) at 200 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) was decreased with increasing time of UV-B treatment showing 80% decline after 4 h treatment. Chl fluorescence parameters were also affected by ultraviolet-B. Fo was increased while both Fm and Fv were decreased, resulted in the decreased of photochemical efficiency of PSII (Fv/Fm). Non-radiative dissipation of absorbed light as heat as estimated as NPQ (Fm/Fm' - 1) was also decreased with increasing time of UV-B treatment while the extent of photochemical quenching (qP) was not changed. Thus, the ratio of (1-qP)/NPQ parameter was also increased with increasing time of UV-B treatment indicating PSII is under the threat of photoinhibition. The result indicate that UV-B primarily decreases the capacity to dissipate excitation energy by trans-thylakoid pH, which in turn inhibits PSII activity.

분자 궤도론에 의한 반응성 계산 (I) Benzene과 Maleic Anhydride 간의 광화학 반응 (Determination of Reactivities by Molecular Orbital Theory (I) Theoretical Treatment on the Photochemical Reaction of Benzene and Maleic Anhydride)

  • 황보명환;이익춘
    • 대한화학회지
    • /
    • 제13권4호
    • /
    • pp.273-280
    • /
    • 1969
  • Maleic Anhydride의 분자궤도를 다음의 파라미터를 사용하여 계산하였다. $h_{o}$=1, $h_{o}$=2, $k_{c=o}$ =0.8 ${\delta}_{{\alpha}_n}=2{\times}(0.3)^n$ 얻어진 분자궤도들로부터 Benzene과 Maleic Anhydride(MA)의 광화학적반응의 작용 에너지를 구하였다. 작용에너지에는 상수항이 포함될 수 있으며 이항이 작용 에너지에 크게 기여함을 보였고 이 반응의 메카니즘은 계산된 작용에너지로 잘 설명됨을 밝혔다. 또한 MA의 두번 째 첨가반응이 광화학적으로 가능하며 MA-Benzene의 부가 생성물은 잘 알려진 입체 화학적 구조를 가져야함을 증명하였다.

  • PDF

Ecophysiological characteristics of Rosa rugosa under different environmental factors

  • Young-Been Kim;Sung-Hwan Yim;Young-Seok Sim;Yeon-Sik Choo
    • Journal of Ecology and Environment
    • /
    • 제47권3호
    • /
    • pp.85-102
    • /
    • 2023
  • Background: Ecophysiological characteristics of Rosa rugosa were analyzed under different environmental factors from May to October 2022. Photosynthesis, chlorophyll fluorescence, chlorophyll content, leaf water content (LWC), osmolality, carbohydrate content, and total ion content were measured to compare the physiological characteristics of R. rugosa at two study sites (i.e., in large pots and in the Goraebul coastal sand dune area). Results: When R. rugosa was exposed to high temperatures, photosynthetic parameters including net photosynthetic rate (PN) and stomatal conductance (gs) in both experiment areas declined. In addition, severe photoinhibition occurs when R. rugosa is continuously exposed to high photosynthetically active radiation (PAR), and because of this, relatively low Y(II) (i.e., the quantum yield of photochemical energy conversion in photosystem II [PSII]) and high Y(NO) (i.e., the quantum yield of non-regulated, non-photochemical energy loss in PSII) in the R. rugosa of the pot were observed. As the high Y(NPQ) (i.e., the quantum yield of regulated non-photochemical energy loss in PSII) of R. rugosa in the coastal sand dune, they dissipated the excessed photon energy through the non-photochemical quenching (NPQ) mechanism when they were exposed to relatively low PAR and low temperature. Rosa rugosa in the coastal sand dune has higher chlorophyll a and carotenoid content. The high chlorophyll a + b and low chlorophyll a/b ratios seemed to optimize light absorption in response to low PAR. High carotenoid content played an important role in NPQ. As a part of the osmotic regulation in response to low LWCs, R. rugosa exposed to high temperatures and continuously high PAR used soluble carbohydrates and ions to maintain high osmolality. Conclusions: We found that Fv/Fm was lower in the potted plants than in the coastal sand dune plants, indicating the vulnerability of R. rugosa to high temperatures and PAR levels. We expect that the suitable habitat range for R. rugosa will shrink and move to north under climate change conditions.