• 제목/요약/키워드: photocatalytic reaction

검색결과 276건 처리시간 0.027초

광촉매(光觸媒) 산화(酸化) 반응(反應)을 이용한 클로로페놀 분해(分解)에 관한 연구(硏究) (A Study on the Removal of Chloro-Phenols by Photocatalytic Oxidation)

  • 이상협;박주석;박중현
    • 상하수도학회지
    • /
    • 제9권4호
    • /
    • pp.87-96
    • /
    • 1995
  • The Electron/Hole Pair is generated when the activation energy produced by ultraviolet ray illuminates to the semiconductor and OH- ion produced by water photocleavage reacts with positive Hole. As a results, OH radical acting as strong oxidant is generated and then Photocatalytic oxidation reaction occurs. The photocatalytic oxidation can oxidate the non-degradable and hazardous organic substances such as pesticides and aromatic materials easier, safer and shorter than conventional water treatment process. So in this study, many factors influencing the oxidation of chlorophenols, such as inorganic electrolytes addition, change of oxygen and nitrogen atmosphere, temperature, pH, oxygen concentration, chlorophenol concentration, were throughly examined. According to the experiments observations, it is founded that the rate of chlorophenol oxidation follows a first-order reaction and the modified Langmuir-Hinshelwood relationship. And the photocatalytic oxidation occurs only when activation energy acting as Electron/Hole generation, oxygen acting as electron acceptor to prevent Electron/Hole recombination, $TiO_2$ powder acting as photocatalyst are present. The effects of variation of dissolved oxygen concentration, temperature and inorganic electrolytes concentration on 2-chlorophenol oxidation are negligible. And the lower the organic concentration, the higher the oxidation efficiency becomes. Therefore, the photocatalytic oxidation is much effective to oxidation of hazardous substances at very low concentration. The oxidation is effective in the range of 0.1 g/L-10 g/L of $TiO_2$. Finally when the ultra-violet ray is illuminated to $TiO_2$, the surface characteristics of $TiO_2$ change and Adsorption/Desorption reaction on $TiO_2$ surface occurs.

  • PDF

Glycothermal법에 의한 ZnS 분말 합성 및 광촉매 특성 (Fabrication of ZnS Powder by Glycothermal Method and Its Photocatalytic Properties)

  • 박상준;임대영;송정환
    • 한국재료학회지
    • /
    • 제27권9호
    • /
    • pp.489-494
    • /
    • 2017
  • ZnS powder was synthesized using a relatively facile and convenient glycothermal method at various reaction temperatures. ZnS was successfully synthesized at temperatures as low as $125^{\circ}C$ using zinc acetate and thiourea as raw materials, and diethylene glycol as the solvent. No mineralizers or precipitation processes were used in the fabrication, which suggests that the spherical ZnS powders were directly prepared in the glycothermal method. The phase composition, morphology, and optical properties of the prepared ZnS powders were characterized using XRD, FE-SEM, and UV-vis measurements. The prepared ZnS powders had a zinc blende structure and showed average primary particles with diameters of approximately 20~30 nm, calculated from the XRD peak width. All of the powders consisted of aggregated secondary powders with spherical morphology and a size of approximately $0.1{\sim}0.5{\mu}m$; these powders contained many small primary nanopowders. The as-prepared ZnS exhibited strong photo absorption in the UV region, and a red-shift in the optical absorption spectra due to the improvement in powder size and crystallinity with increasing reaction temperature. The effects of the reaction temperature on the photocatalytic properties of the ZnS powders were investigated. The photocatalytic properties of the as-synthesized ZnS powders were evaluated according to the removal degree of methyl orange (MO) under UV irradiation (${\lambda}=365nm$). It was found that the ZnS powder prepared at above $175^{\circ}C$ exhibited the highest photocatalytic degradation, with nearly 95 % of MO decomposed through the mediation of photo-generated hydroxyl radicals after irradiation for 60 min. These results suggest that the ZnS powders could potentially be applicable as photocatalysts for the efficient degradation of organic pollutants.

수열합성법에 의한 TiO2 분말 제조와 광촉매 특성 (Preparation of TiO2Powder by Hydrothemal Precipitation Method and their Photocatalytic Properties)

  • 김석현;정상구;나석은;김시영;주창식
    • Korean Chemical Engineering Research
    • /
    • 제51권2호
    • /
    • pp.195-202
    • /
    • 2013
  • 본 연구에서는 Titanium(IV) sulfate($Ti(SO_4)_2$)와 암모니아수로부터 수열합성법을 이용하여 비교적 낮은 합성온도($80{\sim}100^{\circ}C$)와 상압에서 소성과정을 거치지 않고 $TiO_2$ 분말을 제조하였고, $TiO_2$ 제조 시 반응온도, 반응물의 초기농도, 혼합용액의 pH와 같은 반응조건에 따른 $TiO_2$ 입자의 결정구조와 입자분포, 형상 등과 같은 물리적 특성을 고찰하였다. 제조한 시료는 UV 조사 하에 Brilliant Blue FCF(BB-FCF)의 광분해 실험을 실시하여 광분해 성능과 DRS 분석을 통해 광촉매 활성을 비교하였다. 제조한 시료의 물성은 XRD, SEM, PL, 입도분포 측정을 통하여 확인하였다. Titanium(IV) sulfate($Ti(SO_4)_2$)의 초기농도가 증가할수록 $TiO_2$의 평균 입자크기와 결정화도는 증가하였고 광촉매 활성은 감소하였다. 혼합용액의 pH가 높을수록 평균 입자크기는 감소하였고 광촉매 활성은 증가하였다. 반응온도가 높을수록 결정화도와 광촉매 활성은 증가하였다. 이상의 결과들로부터 $Ti(SO_4)_2$와 암모니아수를 이용한 비교적 낮은 합성온도와 상압에서의 수열합성법으로도 순수한 anatase 결정구조의 $TiO_2$가 제조됨을 확인할 수 있었다.

가시광선하에서 황화물계 광촉매를 이용한 로다민 B의 광분해 반응에 대한 무기염의 영향 (Effect of Inorganic Salts on Photocatalytic Degradation of Rhodamine B Using Sulfide Photocatalysts under Visible Light Irradiation)

  • 이근대;진영읍;박성수;홍성수
    • 공업화학
    • /
    • 제28권6호
    • /
    • pp.655-662
    • /
    • 2017
  • CdS 및 CdZnS 황화물계 광촉매를 단순 침전법으로 제조하고, 가시광선 조사하에서의 로다민 B 분해반응에 대한 광촉매로서의 활성을 조사하였다. 이때 KCl, NaCl, $K_3PO_4$, $Na_3PO_4$ 등의 4가지 무기염 첨가가 반응에 미치는 영향을 조사하였으며, 특히 광촉매 반응 과정에서의 $K^+$, $Na^+$, $Cl^-$ 그리고 $PO_4{^{3-}}$ 이온의 역할에 중점을 두고 연구를 진행하였다. 첨가되는 무기염들은 전체 광촉매 반응에 큰 영향을 미칠 수 있다는 것을 알 수 있었다. 특히 무기염 중의 양이온에 비해 음이온이 반응속도에 상대적으로 큰 영향을 미치는 것으로 나타났다. 본 연구의 반응조건하에서 $PO_4{^{3-}}$ 음이온은 광촉매 반응속도를 크게 감소시키지만 $Cl^-$ 이온은 오히려 반응속도를 증가시켰다. 따라서 광촉매 반응을 이용한 폐수처리에 있어서는 다른 첨가물질의 영향을 고려하는 것도 필요한 것으로 판단된다.

Photocatalytic Degradation of 2,4,6-Trinitrotoluene in Wastewater Using a Thin-Film TiO2 Reactor

  • Shin, Gi-Bum;Kim, Yeong-Kwan
    • Environmental Engineering Research
    • /
    • 제13권1호
    • /
    • pp.28-32
    • /
    • 2008
  • The photocatalytic treatment of water contaminated with 2,4,6-trinitrotoluene (TNT) was explored in bench-scale experiments in batch mode using a Pyrex tube coated with a thin film of $TiO_2$ located inside a photoreactor. The reactor was aerated by purging it with compressed air before initiating the photocatalytic reaction. The rate of TNT degradation approximated first-order kinetics. The reaction rate constant decreased as the TNT concentration increased from 25 to 100 mg/L, while the first-order kinetics could be modeled using a Langmuir adsorption isotherm. The addition of the organic reductants methanol and EDTA significantly enhanced the rate of TNT degradation, with optimum results in the presence of 20% methanol by volume. EDTA increased the rate of TNT removal by enhancing the role of the reductants.

충전층 반응기와 고정화 TiO2/UV를 이용한 Rhodamine B의 광촉매 탈색 (Photocatalytic Decolorization of Dye Using Packed-bed Reactor and Immobilized TiO2/UV System)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제16권3호
    • /
    • pp.255-260
    • /
    • 2007
  • The photocatalytic decolorization of Rhodamine B (RhB) was studied using packed-bed reactor and immobilized $TiO_2/UV$ System. The 20 W UV-A, UV-B and UV-C lamps were employed as the light source. The effect of shape and surface polishing extent of reflector, distance between the reactor and reflector, reactor material were investigated. The results showed that the order of the initial reaction constant with reflector shape was round > polygon > W > rhombus. The optimum distance between the reactor and reflector was 2 cm. The initial reaction constant of quartz reactor was 1.46 times higher than that of tile PVDF reactor.

Effect of Heat Treatment and Platinum Loading on CdS Particles in the Photocatalytic Alanine Synthesis

  • Lee, Bu-Yong;Kim, Bong-Gon;Cho, Cheol-Rae;Sakada, Tadayoshi
    • Bulletin of the Korean Chemical Society
    • /
    • 제14권6호
    • /
    • pp.700-704
    • /
    • 1993
  • The photocatalytic alanine and hydrogen production reaction were studied by using CdS as a semiconductor photocatalysts. The rate of alanine and hydrogen production depends strongly on the temperature in heat treatment of CdS powder. In particular, the rate of alanine production, which was observed using Pt/CdS(A)-(CdS from Mitsuwa), was increased about six times than that of using Pt/CdS(B)-(CdS from Furruchi) under the same heat treatment condition at 500$^{\circ}$C. And the photocatalytic activity for alanine production using bare CdS(A) or Pt/CdS(A) was almost same with increasing temperature in heat treatment in the range of 100-600$^{\circ}$C. From X-ray diffraction data and photoluminescence spectrum, we conclude that the crystal structure changes of CdS(A) or strong interaction at interface of Pt and CdS contribute to increasing the rate of alanine and hydrogen production reaction.

Gaseous by-products from the TiO2 Photocatalytic Oxidation of Benzene

  • Han, Sang-Wook;Lee, Jin-Hong;Kim, Jin-Seog;Oh, Sang-Hyub;Park, Young-Kwon;Kim, Hyun-Ook
    • Environmental Engineering Research
    • /
    • 제13권1호
    • /
    • pp.14-18
    • /
    • 2008
  • Photocatalytic oxidations of benzene gas using the closed system (batch reactor) were induced to determine its by-products and investigate the effect of humidity and oxygen concentration on their generation. The study was able to identify 11 gaseous by-products: 2-methylpropene, acetaldehyde, acetone, pentane, methylcyclobutane, methylcyclopentane, cyclohexane, 2,3-dimethylbutane, 2-methylpentane, 3-methylpentane, and hexane. All the by-products were saturated hydrocarbons, which are less toxic than benzene and were probably formed through hydrogenation reaction on the photocatalytic surface. The photocatalytic oxidation of benzene under higher humidity produced less by-products. However, the amount of acetone released increased with higher humidity and oxygen concentration.

TiO2를 이용한 암모니아성 질소 제거에 관한 광촉매 산화반응 (Photocatalytic oxidation reaction in removal of NH4-N by using TiO2)

  • 박상원;김정배
    • 한국환경과학회지
    • /
    • 제12권10호
    • /
    • pp.1071-1077
    • /
    • 2003
  • The aim of this study is, firstly, to find out what kinds of inorganic species are produced in the photocatalytic oxidation of ammonium-nitrogen containing water and, secondly, to seek the influence of anion for the photocatalytic oxidation of ammonium contained compounds. The photoenergy above 3 eV(λ <415 nm) was effectively absorbed by TiO$_2$ and TiO$_2$/polymer was used to be oxidized NH$_4$-N in wastewater to NO$_3$-N. Existing the anion as Cl$\^$-/, the rate of photocatalytic oxidation decreased regardless of other condition. This result showed that the chloride ions reduced the rate of oxidation by scavenging oxidizing radical species as OH$\^$-/ and OCl$\^$-/. Some of the added ion might have blocked the active sites of the catalyst surface, thus deactivated the catalyst.

Synthesis and Characterization of Fe-fullerene/TiO2 Photocatalysts Designed for Degradation of Methylene Blue

  • Meng, Za-Da;Zhang, Kan;Oh, Won-Chun
    • 대한금속재료학회지
    • /
    • 제48권7호
    • /
    • pp.674-682
    • /
    • 2010
  • Fe-fullerene/$TiO_2$ composite photocatalysts were prepared with titanium (IV) n-butoxide (TNB) by a sol-gel method. The samples were characterized by scanning electron microscopy (SEM), Transmission electron microscope (TEM), specific surface area (BET), X-ray diffraction analysis (XRD) and energy dispersive X-ray spectroscopy (EDX). The photocatalytic activities were evaluated by the photocatalytic degradation of methylene blue (MB) solution. XRD patterns of the composites showed that the Fe-fullerene/$TiO_2$ composite contained a typical single and clear anatase phase. The surface properties shown by SEM present a characterization of the texture on Fe-fullerene/$TiO_2$ composites and showed a homogenous composition in the particles for the titanium sources used. The EDX spectra for the elemental identification showed the presence of C and Ti with strong Fe peaks for the Fe-fullerene/$TiO_2$ composite. From the photocatalytic results, the excellent activity of the Fe-fullerene/$TiO_2$ composites for degradation of methylene blue under UV light irradiation could be attributed to both the effects between photocatalytic reaction of the supported $TiO_2$, decomposition of the organometallic reaction by the Fe compound and energy transfer effects such as electron and light of the fullerene.