Browse > Article
http://dx.doi.org/10.14478/ace.2017.1089

Effect of Inorganic Salts on Photocatalytic Degradation of Rhodamine B Using Sulfide Photocatalysts under Visible Light Irradiation  

Lee, Gun Dae (Department of Industrial Chemistry, Pukyong National University)
Jin, Youngeup (Department of Industrial Chemistry, Pukyong National University)
Park, Seong Soo (Department of Industrial Chemistry, Pukyong National University)
Hong, Seong Soo (Department of Chemical Engineering, Pukyong National University)
Publication Information
Applied Chemistry for Engineering / v.28, no.6, 2017 , pp. 655-662 More about this Journal
Abstract
Sulfide photocatalysts, CdS and CdZnS, were synthesized using a simple precipitation method and their photocatalytic activities were evaluated by the degradation of rhodamine B under visible light irradiation. The effects of four inorganic salt additives, KCl, NaCl, $K_3PO_4$, and $Na_3PO_4$, on the photocatalytic reaction were examined and the role of $K^+$, $Na^+$, $Cl^-$ and $PO_4{^{3-}}$ ions during photocatalytic reaction was discussed. The added inorganic salts were shown to have a remarkable effect on the photocatalytic reaction. It was also found that the anions in inorganic salts have a much more profound effect on the reaction rate, as compared to the cations. Under the present experimental conditions, $PO_4{^{3-}}$ revealed a significant inhibitory effect on the degradation rate whereas $Cl^-$ enhanced the rate slightly. This work pointed out that the consideration of additive effects is needed in the photocatalytic reaction for wastewater treatment.
Keywords
sulfide photocatalysts; degradation of rhodamine B; additive; inorganic salts;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. S. Asharf, M. A. Rauf, and S. Alhadrami, Degradation of methyl red using Fenton's reagent and the effect of various salts, Dye and Pigment, 69, 74-78 (2006).   DOI
2 Z .R. Khan, M. Zulfequar, and M. S. Khan, Chemical synthesis of CdS nanoparticles and their optical and dielectric studies, J. Mater. Sci., 46, 5412-5416 (2011).   DOI
3 X. Wang, G. Liu, Z.-H. Chen, and F. Li, Highly efficient $H_2$ evolution over ZnO-ZnS-CdS heterostructures from an aqueous solution containing $SO_3^{2-}$ and $S^{2-}$ ions, J. Mater. Res., 25, 39-44 (2010).   DOI
4 Q. Li, H. Meng, P. Zhou, Y. Zheng, J. Wang, J. Yu, and J. Gong, $Zn_xCd_{1-x}S$ solid solutions with controlled bandgap and enhanced visible-light photocatalytic $H_2$-production activity, ACS Catal., 3, 882-889 (2013).   DOI
5 K. Zhang, D. Jing, Q. Chen, and L. Guo, Influence of Sr-doping on the photocatalytic activities of CdS-ZnS solid solution photocatalysts, Int. J. Hydrogen Energy, 35, 2048-2057 (2010).   DOI
6 E. A. Kozlova, D. V. Markovskaya, S. V. Cherepanova, A. A. Saraev, E. Yu Gerasimov, T. V. Perevalov, V. V. Kaichev, and V. N. Parmon, Novel photocatalysts based on $Cd_{1-x}Zn_xS/Zn(OH)_2$ for the hydrogen evolution from water solutions of ethanol, Int. J. Hydrogen Energy, 39, 18758-18769 (2014).   DOI
7 W. Cui, S. Ma, L. Liu, J. Hu, Y. Liang, and J. G. McEvoy, Photocatalytic activity of $Cd_{1-x}Zn_xS/K_2Ti_4O_9$ for rhodamine B degradation under visible light irradiation, Appl. Surf. Sci., 271, 171-181 (2013).   DOI
8 Y. Li, L. Tang, S. Peng, Z. Li, and G. Lu, Phosphate-assisted hydrothermal synthesis of hexagonal CdS for efficient photocatalytic hydrogen evolution, CrystEngComm, 14, 6974-6982 (2012).   DOI
9 G. A. Tai, J. X. Zhou, and W. L. Guo, Inorganic salt-induced phase control and optical characterization of cadmium sulfide nanoparticles, Nanotechnology, 21, 175601-175607 (2010).   DOI
10 A. Khanna and V. Shetty, Solar photocatalysis for treatment of Acid Yellow-17 (AY-17) dye contaminated water using $Ag@TiO_2$ core-shell structured nanoparticles, Environ. Sci. Pollut. Res., 20, 5692-5707 (2013).   DOI
11 A. Socha, E. Sochocka, R. Podsiadly, and J. Sokolowaka, Electrochemical and photoelectrochemical treatment of C. I. Acid Violet I. Dyes Pigm., 73, 390-393 (2007).   DOI
12 A. M. Khan, A. Mehmooda, M. Sayed, M. F. Nazar, B. Ismail, R. A. Khan, H. Ullah, H. M. A. Rehman, A. Y. Khane, and A. R. Khan, Influence of acids, bases and surfactants on the photocatalytic degradation of a model dye rhodamine B, J. Mol. Liq., 236, 395-403 (2017).   DOI
13 D. Jing and L. Guo, A novel method for the preparation of a highly stable and active CdS photocatalyst with a special surface nanostructure, J. Phys. Chem. B, 110, 11139-11145 (2006).   DOI
14 W. Wang, W. Zhu, and H. Xu, Monodisperse, mesoporous $Zn_xCd_{1-x}S$ nanoparticles as stable visible-light-driven photocatalysts, J. Phys. Chem. C, 112, 16754-16758 (2008).   DOI
15 F. Chen, D. Jia, Y. Cao, X. Jin, and A. Liu, Facile synthesis of CdS nanorods with enhanced photocatalytic activity, Ceram. Int., 41, 14604-14609 (2015).   DOI
16 Y. Min, J. Fan, Q. Xu, and S. Zhang, High visible-photoactivity of spherical $Cd_{0.5}Zn_{0.5}S$ coupled with graphene composite for decolorizating organic dyes, J. Alloy Compd., 609, 46-53 (2014).   DOI
17 K. Yu, S. Yang, H. He, C. Sun, C. Gu, and Y. Ju, Visible light-driven photocatalytic degradation of rhodamine B over $NaBiO_3$: pathways and mechanism, J. Phys. Chem. A, 113, 10024-10032 (2009).   DOI
18 G. Guillard, E. Puzenet, H. Lachheb, A. Houas, and J.-M. Herrmann, Why inorganic salts decrease the $TiO_2$ photocatalytic efficiency, Int. J. Photoenergy, 7, 1-9 (2005).   DOI
19 N. Rioja, S. Zorita, and F. J. Penas, Effect of water matrix on photocatalytic degradation and general kinetic modeling, Appl. Catal. B, 180, 330-335 (2016).   DOI
20 M. Makita and A. Harata, Photocatalytic decolorization of rhodamine B dye as a model of dissolved organic compounds: Influence of dissolved inorganic chloride salts in seawater of the Sea of Japan, Chem. Eng. Process., 47, 859-863 (2008).   DOI
21 T. S. Natarajan, K. Natarajan, H. C. Bajaj, and R. J. Tayade, Study on identification of leather industry waste water constituents and its photocatalytic treatment, Int. J. Environ. Sci. Technol., 10, 855-864 (2013).   DOI
22 T. Bora, P. Sathe, K. Laxman, S. Dobretsov, and J. Dutta, Defect engineered visible light active ZnO nanorods for photocatalytic treatment of water, Catal. Today, 284, 11-18 (2017).   DOI
23 X. Z. Li, F. B. Li, C. L. Yang, and W. K. Ge, Photocatalytic activity of $WO_{x}-TiO_{2}$ under visible light irradiation, J. Photochem. Photobio. A, 141, 209-217 (2001).   DOI
24 Z. Lei, W. You, M. Liu, G. Zhou, T. Takata, M. Hara, K. Domen, and C. Li, Photocatalytic water reduction under visible light on a novel $ZnIn_2S_4$ catalyst synthesized by hydrothermal method, Chem. Commun., 2142-2143 (2003).
25 R. S. Ganesh, S. K. Sharma. E. Durgadevi, M. Navaneethan, H. S. Binitha, S. Ponnusamy, C. Muthamizhchelvan, Y. Hayakawa, and D. Y. Kim, Surfactant free synthesis of CdS nanospheres, microstructural analysis, chemical bonding, optical properties and photocatalytic activities, Superlattices Microstruct., 104, 247-257 (2017).   DOI
26 P. C. C. Faria, J. J. M. Orfao, and M. F. R. Pereira, Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries, Water Res., 38, 2043-2052 (2004).   DOI
27 H. Zhu, R. Jianga, L. Xiao, Y. Chang, Y. Guan, X. Li, and G. Zeng, Photocatalytic decolorization and degradation of Congo Red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation, J. Hazard. Mater., 169, 933-940 (2009).   DOI
28 S. Xie, X. Lu, T. Zhai, J. Gan, W. Li, M. Xu, M. Yu, Y.-M. Zhang, and Y. Tong, Controllable synthesis of $Zn_xCd_{1-x}S@ZnO$ core-shell nanorods with enhanced photocatalytic activity, Langmuir, 28, 10558-10564 (2012).   DOI
29 J. Zhuang, W. Dai, Q. Tian, Z. Li, L. Xie, J. Wang, and P. Liu, Photocatalytic degradation of RhB over $TiO_2$ bilayer films: effect of defects and their location, Langmuir, 26, 9686-9694 (2010).   DOI
30 C. Chen, W. Zhao, J. Li, and J. Zhao, Formation and identification of intermediates in visible-light-assisted photodegradation of sulforhodamine-B dye in aqueous $TiO_2$ dispersion, Environ. Sci. Technol., 36, 3604-3611 (2002).   DOI
31 W. Yao, B. Zhang, C. Huang, C. Ma, X. Song, and Q. Xu, Synthesis and characterization of high efficiency and stable $Ag_3PO_4$/$TiO_2$ visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions, J. Mater. Chem., 22, 4050-4055 (2012).   DOI
32 C.-C. Yang, C.-L. Huang, T.-C. Cheng, and H.-T. Lai, Inhibitory effect of salinity on the photocatalytic degradation of three sulfonamide antibiotics, Int. Biodeterior. Biodegrad., 102, 116-125 (2015).   DOI
33 R. Yuan, S. N. Ramjaun, Z. Wang, and J. Liu, Photocatalytic degradation and chlorination of azo dye in saline wastewater: kinetics and AOX formation, Chem. Eng. J., 192, 171-178 (2012).   DOI
34 W. Li, D. Li, S. Meng, W. Chen, X. Fu, and Y. Shao, Novel approach to enhance photosensitized degradation of rhodamine B under visible light irradiation by the $Zn_xCd_{1-x}S$/$TiO_2$ nanocomposites, Environ. Sci. Technol., 45, 2987-2993 (2011).   DOI
35 H. Y. Chen, O. Zahra, and M. Bouchy, Inhibition of the adsorption and photocatalytic degradation of an organic contaminant in an aqueous suspension of $TiO_2$ by inorganic ions, J. Photochem. Photobiol. A, 108, 37-44 (1997).   DOI
36 A. Piscopo, D. Robert, and J. V. Weber, Influence of pH and chloride anion on the photocatalytic degradation of organic compounds. Part I. Effect on the benzamide and para-hydroxybenzoic acid in $TiO_2$ aqueous solution, Appl. Catal. B, 35, 117-124 (2001).   DOI
37 R. X. Yuan, Z. Wang, Y. Hu, B. Wang, and S. Gao, Probing the radical chemistry in UV/persulfate-based saline wastewater treatment: Kinetics modeling and byproducts identification, Chemosphere, 109, 106-112 (2014).   DOI
38 N. Li, B. Zhou, P. Guo, J. Zhou, and D. Jing, Fabrication of noble-metal-free $Cd_{0.5}Zn_{0.5}S/NiS$ hybrid photocatalysts for efficient solar hydrogen evolution, Int. J. Hydrogen Energy, 38, 11268-11277 (2013).   DOI
39 X. Wang, H. Tian, X. Cui, W. Zheng, and Y. Liu, One-pot hydrothermal synthesis of mesoporous $Zn_xCd_{1-x}S$/reduced graphene oxide hybrid material and its enhanced photocatalytic activity, Dalton Trans., 43, 12894-12903 (2014).   DOI
40 J. F. Budarz, A. Turolla, A. F. Piasecki, J.-Y. Bottero, M. Antonelli, and M. R. Wiesner, Influence of aqueous inorganic anions on the reactivity of nanoparticles in $TiO_2$ photocatalysis, Langmuir, 33, 2770-2779 (2017).   DOI
41 A. M. Dugandzic, A. V. Tomasevic, M. M. Radisic, N. Z. Sekuljica, D. Z. Mijin, and S. D. Petrovic, Effect of inorganic ions, photosensitisers and scavengers on the photocatalytic degradation of nicosulfuron, J. Photochem. Photobiol. A, 336, 146-155 (2017).   DOI
42 P. A. Pekakis, N. P. Xekoukoulotakis, and D. Mantzavinos, Treatment of textile dyehouse wastewater by $TiO_2$ photocatalysis, Water Res., 40, 1276-1286 (2006).   DOI
43 C. Guillard, H. Lachheb, A. Houas, M. Ksibi, E. Elaloui, and J.-M. Herrmann, Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by $TiO_2$ comparison of the efficiency of powder and supported $TiO_2$, J. Photochem. Photobiol. A, 158, 27-36 (2003).   DOI
44 J. Yan, K. Wang, H. Xu, J. Qian, W. Liu, X. Yang, and H. Li, Visible-light photocatalytic efficiencies and anti-photocorrosion behavior of CdS/graphene nanocomposite: Evaluation using methylene blue degradation, Chin. J. Catal., 34, 1876-1882 (2013).   DOI
45 M. Bhati and G. Singh, Growth and mineral accumulation in Eucalyptus camaldulensis seedlings irrigated with mixed industrial effluents, Bioresour. Technol., 88, 221-228 (2003).   DOI