• Title/Summary/Keyword: photo sensor

Search Result 344, Processing Time 0.02 seconds

Monitoring and Control of the Air Spindle Based Microdrilling Using Spindle Speed Variations (주축속도변동을 이용한 공기회전축식 미세구멍가공의 감시제어)

  • 안중환;김화영;이응숙;오정욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1176-1181
    • /
    • 1995
  • Microdrilling is one of the most difficult operations because of the poor chip discharge and the weakness of tool. This study is concerned about the development of a microdrilling monitoring system that is useful for minimizing the tool breakage and enhancing the machinability in the air spindle based microdrilling. The system is composed of a drilling state detection unit and an adaptive step-feed control unit that controls the micro-stepping motor driven spindle axis. Drilling states such as overload, tood breakage are recognized by the change of the air spindle speed which is measured via the reflective photo sensor. Based on the monitoring results, the adaptive step-feed control algorithm adjusts the step increment to keep the decrease of spindle speed within a specified range. The results of evaluation tests have shown that the developed system is very effective to prevent the breakage of microdrill and improves the productivity in comparison with the conventional microdrilling.

Adaptive TMS Variable Area Flow Meters (적응형 TMS 면적식 유량계)

  • Kwak, Doo-Sung;Kim, On;Cho, Ki-Ryang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.3
    • /
    • pp.590-595
    • /
    • 2008
  • A new adaptive TMS variable area flow meter that is used to the environment measuring equipment is proposed. This system is consist of a ball moving within the tube line which corresponds to gas flow and photo sensor array which monitoring the movement of ball. This system can monitoring the position of bali in case of the very few gas flow in various levels. And it can automatically adjust the gas flow at the highest and the lowest level to prevent the tube line blockage.

Development and Application of Non-Contact Rock Fall Detection System utilizing Photo Sensor and Camera (광센서와 카메라를 활용한 비접촉식 낙석감지 시스템 개발 및 적용)

  • Jung, Yong-Bok;Song, Won-Kyong;Kim, Bok-Chul;Kim, Myung-Jin
    • Tunnel and Underground Space
    • /
    • v.20 no.3
    • /
    • pp.207-216
    • /
    • 2010
  • Rockfall monitoring systems generally used in the country are mainly based on the detection of tension of protection wire or tilting of protection post due to rock fall. However, rock fall protection net must be installed prior to the monitoring system and continual maintenance work after each rock fall event is required for a normal operation of these detection systems. To solve these problems, we suggested and implemented a non-contact rock fall detection system using multiple photo sensors and additional camera. After a laboratory experiment and field application, we can conclude that this system is effective and reliable for detecting, collecting and analyzing the rock fall information. In addition, lighten and difference operations on two captured images were able to yield rough estimation of size and direction of rock fall.

Disposable Solid-State pH Sensor Using Nanoporous Platinum and Copolyelectrolytic Junction

  • Noh, Jong-Min;Park, Se-Jin;Kim, Hee-Chan;Chung, Taek-Dong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3128-3132
    • /
    • 2010
  • A disposable solid-state pH sensor was realized by utilizing two nanoporous Pt (npPt) electrodes and a copolyelectrolytic junction. One nanoporous Pt electrode was to measure the pH as an indicating electrode (pH-IE) and the other assembled with copolyelectrolytic junction was to maintain constant open circuit potential ($E_{oc}$) as a solid-state reference electrode (SSRE). The copolyelectrolytic junction was composed of cationic and anionic polymers immobilized by photo-polymerization of N,N'-methylenebisacrylamide, making buffered electrolytic environment on the SSRE. It was expected to make. The nanoporous Pt surrounded by a constant pH excellently worked as a solid state reference electrode so as to stabilize the system within 30 s and retain the electrochemical environment regardless of unknown sample solutions. Combination between the SSRE and the pH-IE commonly based on nanoporous Pt yielded a complete solid-state pH sensor that requires no internal filling solution. The solid state pH sensing chip is simple and easy to fabricate so that it could be practically used for disposable purposes. Moreover, the solid-state pH sensor successfully functions in calibration-free mode in a variety of buffers and surfactant samples.

Estimation of Specular Light Power by Adjusting Incident Laser Power for Measuring Mirror-Like Surface Roughness (경면 거칠기 측정을 위해 레이저 입사 강도 조정에 의한 정반사 광량 추정 알고리즘 개발)

  • 서영호;김주년;안중환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.94-101
    • /
    • 2004
  • From the Beckmann's reflection model of wave incident, reflected light from a surface is known to have not only specular but also diffuse components. The specular component dominant a surface for a mirror-like surface is distributed on the almost the same area as the spot on the surface, but the diffuse component region dominant f3r a rough surface spreads scattered on the larger areas than the spot. Therefore, statistic parameters from the scattered light distribution are more meaningful in the diffuse region, while the magnitude of rather meaning in the specular region. In usual, there need two sensors to acquire two kinds of information: Photo-detector for light intensity magnitude and image sensor for light intensity distribution. But dual sensor scheme requires a beam splitter usually to feed light to each sensor, and moreover there is not a combination rule to relieve the different sensor characteristics. In this study a new method is proposed for acquisition of the dual information using only an image sensor. Specular region is established on an image area being distinguished from a diffuse component, and laser power is adjusted so that no pixel of the image sensor in the specular region is saturated. Simulation based on the light reflection theory and the experimental results are quite well matched, and thus the proposed method was proved to be very useful for mirror-like surface measurement.

Accuracy Analysis of Combined Block Adjustment with GPS/INS Observations Considering Photo Scale (사진축적을 고려한 GPS/INS 항공사진측량 블록조정의 정확도 분석)

  • Lee Jae One
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.3
    • /
    • pp.323-330
    • /
    • 2005
  • More than ten years after the era of GPS-Photogrammetry which could provide us only three projection center of all six exterior orientation parameters, direct georeferencing with GPS/INS is now becoming a standard method for image orientation. Its main advantage is to skip or reduce the indirect ground control process. This paper describes the experimental test results of integrated sensor orientation with a commercial GPS/IMU system to approve its performance in determination of exterior orientation. For this purpose two different imaging blocks were planned and the area was photographed at a large photo scale of 1:5,000 and a medium photo scale of 1:20,000. From these data set a variety of meaningful results was acquired, i.e., the accuracy. potential of exterior orientation from direct georeferencing and combined block adjustment using these data considering different photo scales and conditions.

The Tip Position Measurement of a Flexible Robot Arm Using a Vision Sensor (비전 센서를 이용한 유연한 로봇팔의 끝점 위치 측정)

  • Shin, Hyo-Pil;Lee, Jong-Kwang;Kang, E-Sok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.682-688
    • /
    • 2000
  • To improve the performance of a flexible robot arm one of the important things is the vibration displacement measurement of a flexible arm. Many types of sensors have been used to measure it, The most popular has been strain gauges which measures the deflection of the beam,. Photo sensors have also been for detecting beam displacement and accelerometers are often used to measure the beam vibration. But the vibration displacement can be obtained indirectly from these sensors. In this article a vision sensor is used as a displacement sensor to measure the vibration displacement of a flexible robot arm. Several schemes are proposed to reduce the image processing time and increase its accuracy. From the experimental results it is seen that the vision sensor can be an alternative sensor for measuring the vibration displacement and has a potential for on-line tip position control of flexible robot systems.

  • PDF

A Comparison of Signal Processing Techniques in Optical Current Sensor for GIS

  • Kim, Young-Min;Park, Jung-Hwan;Jee, Seung-Wook;Lee, Kwang-Sik;Kim, Jung-Bae;Park, Won-Zoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.9
    • /
    • pp.103-109
    • /
    • 2006
  • This research is contents about output characteristic of optic current sensor that use faraday effect. optic current sensor used in an experiment is consisted of three parts.(1) Source of light used laser diode of 1310[nm].(2) Sensor section manufactured circularly according to gas insulated switchgear. And $9/125[{\mu}m]$ standard single mode optical fiber for communication was installed winding 20 [turn] on sensor section core surroundings of diameter 31 [cm].(3) Electrical signal of PD(Photo detector) is collected using NI company's 16bit DAQ board via terminal block. Collected data analyzed by different three signal processing methods. NI company's $Labview^{TM}$ was used to signal processing software. As a result, In signal processing of optic current sensor, we could know that noise greatly more influences the error generation than fluctuation of light intensity. also, 1 class CT(current transformer) manufacture that have error rate less than 1[%] was available by removing these

Registration of Aerial Image with Lines using RANSAC Algorithm

  • Ahn, Y.;Shin, S.;Schenk, T.;Cho, W.
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.529-536
    • /
    • 2007
  • Registration between image and object space is a fundamental step in photogrammetry and computer vision. Along with rapid development of sensors - multi/hyper spectral sensor, laser scanning sensor, radar sensor etc., the needs for registration between different sensors are ever increasing. There are two important considerations on different sensor registration. They are sensor invariant feature extraction and correspondence between them. Since point to point correspondence does not exist in image and laser scanning data, it is necessary to have higher entities for extraction and correspondence. This leads to modify first, existing mathematical and geometrical model which was suitable for point measurement to line measurements, second, matching scheme. In this research, linear feature is selected for sensor invariant features and matching entity. Linear features are incorporated into mathematical equation in the form of extended collinearity equation for registration problem known as photo resection which calculates exterior orientation parameters. The other emphasis is on the scheme of finding matched entities in the aide of RANSAC (RANdom SAmple Consensus) in the absence of correspondences. To relieve computational load which is a common problem in sampling theorem, deterministic sampling technique and selecting 4 line features from 4 sectors are applied.

Accuracy improvement of respiration rate based on photo-plethysmography by enhancing motion artifact (광용적맥파(PPG)를 이용한 호흡수 측정에 있어서 동잡음을 이용한 정확도 향상)

  • Huh, Young-Jung;Yoon, Gil-Won
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.447-453
    • /
    • 2008
  • Respiration rate is one of the important vital signs. Photo-plethysmography (PPG) measurement especially on a finger has been widely used in pulse oximetry and also used in estimating respiration rate. It is well known that PPG contains respiration-induced intensity variation (RIIV) signal. However, the accuracy of finger PPG method has been controversial. We introduced a new technique of enhancing motion artifact by respiration. This was achieved simply by measuring PPG on the thorax. We examined the accuracy of these two PPG methods by comparing with two existing methods based on thoracic volume and nostril temperature changes. PPG sensing on finger tip, which is the most common site of measurement, produced 6.1 % error. On the other hand, our method of PPG sensing on the thorax achieved 0.4 % error which was a significant improvement. Finger PPG is sensitive to motion artifact and it is difficult to recover fully small respiratory signal buried in waveform dominated by absorption due to blood volume changes. Thorax PPG is poor to represent blood volumes changes since it contains substantial motion artifact due to respiration. Ironically, this inferior quality ensures higher accuracy in terms of respiration measurement. Extreme low-cost and small-sized LED/silicon detector and non-constrained reflection measurement provide a great candidate for respiration estimation in ubiquitous or personal health monitoring.