• 제목/요약/키워드: photo current

Search Result 415, Processing Time 0.029 seconds

Design and Implementation of Optical Receiving Bipolar ICs for Optical Links

  • Nam Sang Yep;Ohm Woo Young;Lee Won Seok;Yi Sang Yeou1
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.717-722
    • /
    • 2004
  • A design was done, and all characteristic of photodetectr of the web pattern type which a standard process of the Bipolar which Si PIN structure was used in this paper, and was used for the current amplifier design was used, and high-speed, was used as receiving optcal area of high altitude, and the module which had a low dark current characteristic was implemented with one chip with a base. Important area decreases an area of Ie at the time of this in order to consider an electrical characteristic and economy than the existing receiving IC, and performance of a product and confidence are got done in incense. First of all, the receiving IC which a spec, pattern of a wafer to he satisfied with the following electrical optical characteristic that produced receiving IC of 5V and structure are determined, and did one-chip is made. On the other hand, the time when AR layer of double is $Si_{3}N_{4}/SiO_{2}=1500/1800$ has an optical reflectivity of less than $10{\%}$ on an incidence optical wavelength of 660 ,and, in case of photo detector which reverse voltage made with 1.8V runs in 1.65V, an error about a change of thickness is very the thickness that can be improved surely. And, as for the optical current characteristic, about 5 times increases had the optical current with 274nA in 55nA when Pc was -27dBm. A BJT process is used, and receiving IC running electricity suitable for low voltage and an optical characteristic in minimum 1.8V with a base with two phases is made with one chip. IC of low voltage operates in 1.8V and 3.0V at the same time, and optical link receiving IC is going to be implemented

  • PDF

Titania Nanotube-based Dye-sensitized Solar Cells (티타니아 나노튜브를 이용한 염료감응 태양전지)

  • Kim, Taehyun;Jung, Jihoon
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.447-452
    • /
    • 2018
  • Titanium nanotubes (TNT) of various lengths ranging from $0.34^{\circ}C$ to a maximum of $8.9^{\circ}C$ were prepared by anodizing a titanium metal sheet in an electrolyte containing fluorine ion ($F^-$) of HF, NaF and $NH_4F$. When TNT prepared by anodizing was calcined at $450^{\circ}C$, anatase crystals with photo activity were formed. The TNT-based dye-sensitized solar cell (DSSC) showed a maximum conversion efficiency of 4.71% when the TNT length was $2.5{\mu}m$. This value was about 18% higher than photo conversion efficiency of the FTO-based DSSC coated with titania paste. And the short circuit current density ($J_{sc}$) of the TNT-DSSC was $9.74mA/cm^2$, which was about 35% higher than the $7.19mA/cm^2$ of FTO-DSSC. The reason for the higher conversion efficiency of TNT-DSSC solar cells is that photoelectrons generated from dyes are rapidly transferred to the electrode surface through TNT, and the recombination of photoelectrons and dyes is suppressed.

A Study on the Detection Characteristics of the Magneto-Plethysmography According to Fluid Properties (유체의 성질에 따른 자계용적맥파의 검출 특성에 관한 연구)

  • Kim, Sang-Min;Lee, Kang-Hwi;Lee, Seong-Su;Lee, Hyeok-Jae;Lee, Byoung-Hun;Kim, Kyeoung-Seop;Lee, Jeong-Whan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.946-953
    • /
    • 2018
  • Photo-plethysmography (PPG), which measures changes in the peripheral blood flow of a human body using difference in absorption rate of light, is a measurement method that is studied and used in clinical and various applications due to its simple circuit configuration and measurement convenience. Magneto-plethysmography (MPG), which is newly developed by our team, is a method of measuring changes in the conductivity of biological tissues by using a eddy current induced by a time-varying magnetic field, and is not subject to optical interference. In this study, we investigated the detection characteristics of MPG according to the change of the conductivity of the object and fluid to be measured by simultaneously measuring PPG and MPG. In order to control the speed of fluid known in advance, a blood flow simulator was implemented and used. The fluid used in the experiment was general mineral water and physiological saline (0.9% NaCl) solution. Experimental results show that the amplitude change of the measured PPG was 0.3% in normal water and saline solution, and that of MPG was 77.3%. Therefore, it is considered that the magneto-plethysmography (MPG) has a strong correlation with the conductivity of the fluid.

ZnO Based All Transparent UV Photodetector with Functional SnO2 Layer (SnO2 기능성 박막을 이용한 ZnO 기반의 투명 UV 광검출기)

  • Lee, Gyeong-Nam;Lee, Joo-Hyun;Kim, Joondong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.68-74
    • /
    • 2018
  • All transparent UV photodetector based on ZnO was fabricated with structure of NiO/ZnO/$SnO_2$/ITO by using RF and DC magnetron sputtering system. ZnO was deposited with 4 inch ZnO target (purity 99.99%) for a quality film. In order to build p-n junction up, p-type NiO was formed on n-type ZnO by using reactive sputtering method. The indium tin oxide (ITO) which is transparent conducting oxide (TCO) was applied as a transparent electrode for transporting electrons. To improve the UV photodetector performance, a functional $SnO_2$ layer was selected as an electron transporting and hole blocking layer, which actively controls the carrier movement, between ZnO and ITO. The photodetector (NiO/ZnO/$SnO_2$/ITO) shows transmittance over 50% as similar as the transmittance of a general device (NiO/ZnO/ITO) due to the high transmittance of $SnO_2$ for broad wavelengths. The functional $SnO_2$ layer for band alignment effectively enhances the photo-current to be $15{\mu}A{\cdot}cm^{-2}$ (from $7{\mu}A{\cdot}cm^{-2}$ of without $SnO_2$) with the quick photo-responses of rise time (0.83 ms) and fall time (15.14 ms). We demonstrated the all transparent UV photodetector based on ZnO and suggest the route for effective designs to enhance performance for transparent photoelectric applications.

Photofield-Effect in Amorphous In-Ga-Zn-O (a-IGZO) Thin-Film Transistors

  • Fung, Tze-Ching;Chuang, Chiao-Shun;Nomura, Kenji;Shieh, Han-Ping David;Hosono, Hideo;Kanicki, Jerzy
    • Journal of Information Display
    • /
    • v.9 no.4
    • /
    • pp.21-29
    • /
    • 2008
  • We studied both the wavelength and intensity dependent photo-responses (photofield-effect) in amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors (TFTs). During the a-IGZO TFT illumination with the wavelength range from $460\sim660$ nm (visible range), the off-state drain current $(I_{DS_off})$ only slightly increased while a large increase was observed for the wavelength below 400 nm. The observed results are consistent with the optical gap of $\sim$3.05eV extracted from the absorption measurement. The a-IGZO TFT properties under monochromatic illumination ($\lambda$=420nm) with different intensity was also investigated and $I_{DS_off}$ was found to increase with the light intensity. Throughout the study, the field-effect mobility $(\mu_{eff})$ is almost unchanged. But due to photo-generated charge trapping, a negative threshold voltage $(V_{th})$ shift is observed. The mathematical analysis of the photofield-effect suggests that a highly efficient UV photocurrent conversion process in TFT off-region takes place. Finally, a-IGZO mid-gap density-of-states (DOS) was extracted and is more than an order of magnitude lower than reported value for hydrogenated amorphous silicon (a-Si:H), which can explain a good switching properties observed for a-IGZO TFTs.

High Efficient and Stable Dye-sensitized Solar Cells (DSSCs) with Low Melting Point Glass Frits

  • Kim, Jong-U;Kim, Dong-Seon;Kim, Hyeong-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.42.2-42.2
    • /
    • 2011
  • $TiO_2$ films were modified by adding a glass frit as a light scattering particle and applied to an anode electrode in dye-sensitized solar cells (DSSCs) to enhance the adhesion between $TiO_2$ and fluorine doped transparent oxide (FTO). Low melting point glass frits at contents of (3 to 7wt%) were added to the nano crystalline $TiO_2$ films. The light scattering properties, photovoltaic properties and microstructures of the photo electrodes were examined to determine the role of the low glass transition temperature ($T_g$) glass frit. Electrochemical impedance spectroscopy, Brunauer-Emmett-Teller method and scratch test were conducted to support the results. The DSSC with the $TiO_2$ film containing 3wt% low Tg glass frit showed optimal performance (5.1%, energy conversion efficiency) compared to the $TiO_2$-based one. The photocurrent density slightly decreased by adding 3wt% of the frit due to its large size and non conductivity. However, the decrease of current density followed by the decrease of electron transfer due to the large frit in $TiO_2$ electrode was compensated by the scattering effect, high surface area and reduced the electron transfer impedance at the electrolyte-dye-$TiO_2$ interface. The stability of the photo electrodes was improved by the frit, which chemically promoted the sintering of $TiO_2$ at relatively low temperature ($450^{\circ}C$).

  • PDF

Application Technique of Spatial Information for Disaster Areas Forecast (재해지역 예측에서의 공간정보의 활용 기법 연구개발)

  • Yeon, sang-ho;Kwon, kee-wook;Min, kwan-sik
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2010.05a
    • /
    • pp.277-280
    • /
    • 2010
  • The prevention of disasters is important to prepare in advance through analysis and an estimate. But for all the efforts of the government to stave off disasters, the damage out of a guerilla localized heavy rain caused the global warming, a landslide and inundation is growing. To prevent these damages, the basic data and system through systematic research and analysis should be set up. But it is true that collecting of the basic data and the system for preventing disasters are either constructing or insufficient so far. In this research, by using topography spatial data including LiDAR data including the aerial photo and digital maps, and etc. the factor of a disaster, the disaster risk element was extracted. Moreover, the disaster region about the disaster generation available region was evaluated in advance using the easy disaster analysis of current situation photo map which made with the grid analysis method and weighted value estimate technique.

  • PDF

UV Responsive Characteristics of n-Channel Schottky Barrier MOSFET with ITO as Source/Drain Contacts

  • Kim, Tae-Hyeon;Lee, Chang-Ju;Kim, Dong-Seok;Sung, Sang-Yun;Heo, Young-Woo;Lee, Jung-Hee;Hahm, Sung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.156-161
    • /
    • 2011
  • We fabricated a schottky barrier metal oxide semiconductor field effect transistor(SB-MOSFET) by applying indium-tin-oxide(ITO) to the source/drain on a highly resistive GaN layer grown on a silicon substrate. The MOSFET, with 10 ${\mu}M$ gate length and 100 ${\mu}M$ gate width, exhibits a threshold gate voltage of 2.7 V, and has a sub-threshold slope of 240 mV/dec taken from the $I_{DS}-V_{GS}$ characteristics at a low drain voltage of 0.05 V. The maximum drain current is 18 mA/mm and the maximum transconductance is 6 mS/mm at $V_{DS}$=3 V. We observed that the spectral photo-response characterization exhibits that the cutoff wavelength was 365 nm, and the UV/visible rejection ratio was about 130 at $V_{DS}$ = 5 V. The MOSFET-type UV detector using ITO, has a high UV photo-responsivity and so is highly applicable to the UV image sensors.

The Study of Sputtered SiGe Thin Film Growth for Photo-detector Application (광검출기 응용을 위하여 스퍼터된 미세결정 SiGe 박막성장 연구)

  • Kim, Do-Young;Kim, Sun-Jo;Kim, Hyung-Jun;Han, Sang-Youn;Song, Jun-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.6
    • /
    • pp.439-444
    • /
    • 2012
  • For the application of photo-detector as active layer, we have studied how to deposit SiGe thin film using an independent Si target and Ge target, respectively. Both targets were synthesized by purity of 99.999%. Plasma generators were generated by radio frequency (rf, 13.56 MHz) and direct current (dc) power. When Ge and Si targets were sputtered by dc and rf power, respectively, we could observe the growth of highly crystalline Ge thin film at the temperature of $400^{\circ}C$ from the result of raman spectroscopy and X-ray diffraction method. However, SiGe thin film did not deposit above method. Inversely, we changed target position like that Ge and Si targets were sputtered by rf and dc power, respectively. Although Ge crystalline growth without Si target sputtering deteriorated considerably, the growth of SiGe thin film was observed with increase of Si dc power. SiGe thin film was evaluated as microcrystalline phase which included (111) and (220) plane by X-ray diffraction method.

LED IT-based System sensor network transceiver module research (LED IT 기반 시스템 센서 네트워크 송수신 모듈 연구)

  • Jang, Tae-Su;Lee, Jun-Myung;Choi, Jung-Won;Kim, Yong-kab
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.11-12
    • /
    • 2012
  • In this paper, efficient visible light communication technology LED (Light Emitting Diode) lighting through the existing infrared sensor used for performance analysis of transmitting and receiving is possible. LED utilizes lighting by changing light into electricity. Lighting features while maintaining the basic principles of flashing LED and PD (Photo Diode) to send and receive communications from LED lighting communication convergence principle be realized simultaneously enabling. Multiple IT applications under the basic structure of LED technology development, and the current was encountered in real life. LED lighting anywhere with wireless communication technology that can, in order to ~ 1m above the initial value by taking advantage of the system H/W and infrared sensors(PD) are widely used in the entire system that can improve the speed of visible light data transmission system is finished. LED module that is used to communicate whether the performance analysis, For forecasting and communication distance on the LED and infrared sensor configuration of the implementation of the research is to study about the possibility of application methods and indicates.

  • PDF