• 제목/요약/키워드: phosphorus doping

검색결과 68건 처리시간 0.028초

Diffusion Behaviors of B and P at the Interfaces of Si/$SiO_2$ Multilayer System After the Annealing Process

  • Jang, Jong-Shik;Kang, Hee-Jae;Hwang, Hyun-Hye;Kim, Kyung-Joong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.232-232
    • /
    • 2012
  • The doping of semiconducting elements is essential for the development of silicon quantum dot (QD) solar cells. Especially the doping elements should be activated by substitution at the crystalline sites in the crystalline silicon QDs. However, no analysis technique has been developed for the analysis of the activated dopants in silicon QDs in $SiO_2$ matrix. Secondary ion mass spectrometry (SIMS) is a powerful technique for the in-depth analysis of solid materials and the impurities analysis of boron and phosphorus in semiconductor materials. For the study of diffusion behaviour of B and P by SIMS, Si/$SiO_2$ multilayer films doped by B or P were fabricated and annealed at high temperatures for the activated doping of B and P. The distributions of doping elements were analyzed by SIMS. Boron found to be preferentially distributed in Si layer rather than the $SiO_2$ layer. Especially the B in the Si layers was separated to two components of an interfacial component and a central one. The central component was understood as the activated elements. On the other hand, phosphorus did not show any preferred diffusion.

  • PDF

Comparative Free and Acetylated Polyamine Profiles in the Urine of Normal Subjects and Various Cancer Patients

  • Suh, Ja Won;Lee, Seon Hwa;Park, Young Han;Chung, Bong Chul;Park, Jongsei
    • 분석과학
    • /
    • 제8권4호
    • /
    • pp.895-900
    • /
    • 1995
  • Urinary free and acetylated polyamine profiles have been investigated for their potential usefulness as biochemical markers of cancer in a control of group comprised of healthy volunteers (32 cases) and patients with various types of cancers(48 cases). The nine (5 free and 4 acetylated) endogeneous polyamines were simultaneously determined by a sensitive capillary gas chromatography/nitrogen-phosphorus detector (GC/NPD). The newly modified (simple and convenient) method was developed and the compounds were isolated by adsorption onto silica gel and derivatized by heptafluorobutyric anhydride to enhance their specificity on gas chromatograms. The good quality-control data were obtained through the precision and accuracy test and the recovery range of them was 48.6 ~ 101.2 %. The Korean reference values of urinary polyamines were established and significant differences were found in cancer patients compared with normal subjects. Also, to eliminate subject variations, precursors to product concentration ratios were compared between cancer patients and control group. The ratios of both putrescine to spermidine and total (free plus acetylated) putrescine to total spermidine were significantly greater in cancer patients than in normal subjects.

  • PDF

플라즈마 도핑을 이용한 결정질 태양전지 에미터층 형성 연구 (A Study on Emitter layer by Plasma Doping for Crystalline Silicon Solar Cells)

  • 유동열;노시철;최정호;김정환;서화일;김영철
    • 반도체디스플레이기술학회지
    • /
    • 제10권4호
    • /
    • pp.61-64
    • /
    • 2011
  • In order to grow the crystalline solar cells industry continuously, development of alternate low-cost manufacturing processes is required. Plasma doping system is the technique for introducing dopants into semiconductor wafers in CMOS devices. In photovoltaics, plasma doping system could be an interesting alternative to thermal furnace diffusion processes. In this paper, plasma doping system was applied for phosphorus doping in crystalline solar cells. The Plasma doping was carried out in 1~4 KV bias voltages for four minutes. For removing surface damage and formation of pn junction, annealing steps were carried out in the range of $800{\sim}900^{\circ}C$ with $O_2$ ambient using thermal furnace. The junction depth in about $0.35{\sim}0.6{\mu}m$ range have been achieved and the doping profiles were very similar to emitter by thermal diffusion. So, It could be confirmed that plasma doping technique can be used for emitter formation in crystalline solar cells.

Ultra low sheet resistance on poly silicon film by Excimer laser activation

  • Lim, Hyuck;Yin, Huaxiang;Xianyu, Wenxu;Kwon, Jang-Yeon;Zhang, Xiaoxin;Cho, Hans-S;Kim, Jong-Man;Park, Kyung-Bae;Kim, Do-Young;Jung, Ji-Sim;Noguchi, Takashi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1112-1115
    • /
    • 2005
  • In this study, we performed excimer laser activation on Phosphorus or Boron doped a-Si (amorphous silicon) film. We've got a very low sheet resistance (Rs), Rs was 60 ohm/sq. with phosphorus doping and was 65 ohm/sq. with boron doping at each optimized laser irradiation condition. We've found Rs on activated thin film showed an unprecedented behavior in both cases, because Rs had a strong dependency on the crystallinity of the activated Si film.

  • PDF

Optimization of the Phosphorus Doped BSF Doping Profile and Formation Method for N-type Bifacial Solar Cells

  • Cui, Jian;Ahn, Shihyun;Balaji, Nagarajan;Park, Cheolmin;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • 제4권2호
    • /
    • pp.31-41
    • /
    • 2016
  • n-type PERT (passivated emitter, rear totally diffused) bifacial solar cells with boron and phosphorus diffusion as p+ emitter and n+ BSF (back surface field) have attracted significant research interest recently. In this work, the influences of wafer thickness, bulk lifetime, emitter, BSF on the photovoltaic characteristics of solar cells are discussed. The performance of the solar cell is determined by using one-dimensional solar cell simulation software PC1D. The simulation results show that the key role of the BSF is to decrease the surface doping concentration reducing the recombination and thus, increasing the cell efficiency. A lightly phosphorus doped BSF (LD BSF) was experimentally optimized to get low surface dopant concentration for n type bifacial solar cells. Pre-oxidation combined with a multi-plateau drive-in, using limited source diffusion was carried out before pre-deposition. It could reduce the surface dopant concentration with minimal impact on the sheet resistance.

자연 산화물 분산 촉진에 의한 실 시간 인 도핑 실리콘의 고품질 에피택셜 저온 성장 (High-Quality Epitaxial Low Temperature Growth of In Situ Phosphorus-Doped Si Films by Promotion Dispersion of Native Oxides)

  • 김홍승;심규환;이승윤;이정용;강진영
    • 한국전기전자재료학회논문지
    • /
    • 제13권2호
    • /
    • pp.125-130
    • /
    • 2000
  • Two step growth of reduced pressure chemical vapor eposition has been successfully developed to achieve in-situ phosphorus-doped silicon epilayers, and the characteristic evolution on their microstructures has been investigated using scanning electron microscopy, transmission electron microscopy, and secondary ion mass spectroscopy. The two step growth, which employs heavily in-situ P doped silicon buffer layer grown at low temperature, proposes crucial advantages in manipulating crystal structures of in-situ phosphorus doped silicon. In particular, our experimental results showed that with annealing of the heavily P doped silicon buffer layers, high-quality epitaxial silicon layers grew on it. the heavily doped phosphorus in buffer layers introduces into native oxide and plays an important role in promoting the dispersion of native oxides. Furthermore, the phosphorus doping concentration remains uniform depth distribution in high quality single crystalline Si films obtained by the two step growth.

  • PDF

새로운 대기압 플라즈마 제트를 이용한 태양전지용 고농도 선택적 도핑에 관한 연구 (Research of Heavily Selective Emitter Doping for Making Solar Cell by Using the New Atmospheric Plasma Jet)

  • 조이현;윤명수;손찬희;조태훈;김동해;서일원;노준형;전부일;김인태;최은하;조광섭;권기청
    • 한국진공학회지
    • /
    • 제22권5호
    • /
    • pp.238-244
    • /
    • 2013
  • 태양전지 제조공정에서 열처리로 레이저를 사용하는 도핑공정은 태양전지의 성능을 결정짓는 중요한 요소이다. 그러나 퍼니스를 이용하는 공정에서는 선택적으로 고농도(Heavy) 도핑영역을 형성하기가 어렵다. 레이저를 사용한 선택적 도핑의 경우 고가의 레이저 장비가 요구되어지며, 레이저 도핑 후 고온의 에너지로 인한 웨이퍼의 구조적 손상 문제가 발생된다. 본 연구는 저가이면서 코로나 방전 구조의 대기압 플라즈마 소스를 제작하였고, 이를 통한 선택적 도핑에 관한 연구를 하였다. 대기압 플라즈마 제트는 Ar 가스를 주입하여 수십 kHz 주파수를 인가하여 플라즈마를 발생시키는 구조로 제작하였다. P-type 웨이퍼(Cz)에 인(P)이 shallow 도핑 된(120 Ohm/square) PSG (Phosphorus Silicate Glass)가 제거되지 않은 웨이퍼를 사용하였다. 대기압 플라즈마 도핑 공정 처리시간은 15 s와 30 s이며, 플라즈마 전류는 40 mA와 70 mA로 처리하였다. 웨이퍼의 도핑프로파일은 SIMS (Secondary Ion Mass Spectroscopy)측정을 통하여 분석하였으며, 도핑프로파일로 전기적 특성인 면저항(sheet resistance)을 파악하였다. 도펀트로 사용된 PSG에 대기압 플라즈마 제트로 도핑공정을 처리한 결과 전류와 플라즈마 처리시간이 증가됨에 따라 도핑깊이가 깊어지고, 면저항이 향상하였다. 대기압 플라즈마 도핑 후 웨이퍼의 표면구조 손상파악을 위한 SEM (Scanning Electron Microscopy) 측정결과 도핑 전과 후 웨이퍼의 표면구조는 차이가 없음을 확인하였으며, 대기압 플라즈마 도핑 폭도 전류와 플라즈마 처리시간이 증가됨에 따라 증가하였다.

Estimation of Phosphorus Concentration in Silicon Thin Film on Glass Using ToF-SIMS

  • Hossion, M. Abul;Murukesan, Karthick;Arora, Brij M.
    • Mass Spectrometry Letters
    • /
    • 제12권2호
    • /
    • pp.47-52
    • /
    • 2021
  • Evaluating the impurity concentrations in semiconductor thin films using time of flight secondary ion mass spectrometry (ToF-SIMS) is an effective technique. The mass interference between isotopes and matrix element in data interpretation makes the process complex. In this study, we have investigated the doping concentration of phosphorus in, phosphorus doped silicon thin film on glass using ToF-SIMS in the dynamic mode of operation. To overcome the mass interference between phosphorus and silicon isotopes, the quantitative analysis of counts to concentration conversion was done following two routes, standard relative sensitivity factor (RSF) and SIMetric software estimation. Phosphorus doped silicon thin film of 180 nm was grown on glass substrate using hot wire chemical vapor deposition technique for possible applications in optoelectronic devices. Using ToF-SIMS, the phosphorus-31 isotopes were detected in the range of 101~104 counts. The silicon isotopes matrix element was measured from p-type silicon wafer from a separate measurement to avoid mass interference. For the both procedures, the phosphorus concentration versus depth profiles were plotted which agree with a percent difference of about 3% at 100 nm depth. The concentration of phosphorus in silicon was determined in the range of 1019~1021 atoms/cm3. The technique will be useful for estimating distributions of various dopants in the silicon thin film grown on glass using ToF-SIMS overcoming the mass interference between isotopes.

$P^+N, P^+NN^+$ 접합형 실리콘 태양전지의 제작 및 특성 (Fabrication and Characteristics of $P^+N$ and $P^+NN^+$ Junction Silicon Solar Cell)

  • 이대우;이종덕;김기원
    • 대한전자공학회논문지
    • /
    • 제20권1호
    • /
    • pp.22-26
    • /
    • 1983
  • 열확산(thermal diffusion)법을 이용하여 면적이 3.36㎠인 P+N 전지와 P+NN+ 전지를 제작하였다. 100mW/㎠의 인공 조명에서 측정한 결과 940℃에서 15분 보론확산(boron Predeposition)을 하고, 800℃에서 20분 열처리(annealing)하여 제작한 P+N전지는 전면적(수광면적) 변환 효율이 13.4%(14.7%)이었다. 뒷면을 1050℃에서 인(Phosphorus)을 확산한 후, 앞면을 940℃에서 15분 보론 확산하고, 800℃에서 50분 열처리하여 만든 P+NN+전지의 전면적(수광면적) 변환 효율은 14.3%(15.6%)이었다. 뒷면의 인 확산으로 게더링(gettering) 작용과 BSF 효과에 의해서 P+NN+ 전지가 P+N전지보다 캐리어 수명이 약 2∼3배 증가되었다. 그리고 효율 개선을 위해 AR로팅, Ag전기도금, 미세한 그리드 패턴, 앞면 불순물 주입량 조절 등을 행하였다.

  • PDF

Binary Doping of N-B and N-P into Graphene and Graphene Nanoribbons: Structural, Electronic, and Transport properties

  • Kim, Hyo Seok;Kim, Han Seul;Kim, Seong Sik;Kim, Yong Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.647-647
    • /
    • 2013
  • We apply a density functional theory (DFT) and DFT-based non-equilibrium Green's function approach to study the structures, energetics and charge transport characteristics of nitrogen-doped graphene and graphene nanoribbons (GNRs) with additional doping of phosphorus or boron atoms. Considering graphitic, pyridinic, and porphrin-like N doping sites and increasing N-doping concentration, we analyze the structures of N-P and N-B doped graphene and particularly focus on how they affect the charge transport along the lateral direction. For the GNRs, we also consider the differences between defects formed at the edge and bulk regions. Implications of our findings in the context of electronic and energy device applications will be also discussed.

  • PDF