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Abstract : Evaluating the impurity concentrations in semiconductor thin films using time of flight secondary ion mass spec-
trometry (ToF-SIMS) is an effective technique. The mass interference between isotopes and matrix element in data interpretation
makes the process complex. In this study, we have investigated the doping concentration of phosphorus in, phosphorus doped sili-
con thin film on glass using ToF-SIMS in the dynamic mode of operation. To overcome the mass interference between phosphorus
and silicon isotopes, the quantitative analysis of counts to concentration conversion was done following two routes, standard rela-
tive sensitivity factor (RSF) and SIMetric software estimation. Phosphorus doped silicon thin film of 180 nm was grown on glass
substrate using hot wire chemical vapor deposition technique for possible applications in optoelectronic devices. Using ToF-SIMS,
the phosphorus-31 isotopes were detected in the range of 101~104 counts. The silicon isotopes matrix element was measured from p-
type silicon wafer from a separate measurement to avoid mass interference. For the both procedures, the phosphorus concentration
versus depth profiles were plotted which agree with a percent difference of about 3% at 100 nm depth. The concentration of phos-
phorus in silicon was determined in the range of 1019~1021 atoms/cm3. The technique will be useful for estimating distributions of
various dopants in the silicon thin film grown on glass using ToF-SIMS overcoming the mass interference between isotopes. 
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Introduction

An accurate quantification of the dopant profile in

semiconductor is a complex task even today with the

scaling down of devices such as, transistors1 and thin film

solar cell.2 The dopants concentration in the semiconductor

can be simulated using stopping and range of ions in matter

(SRIM) computation code3 from an ion implanted sample.

For generalised samples, secondary ion mass spectrometry

(SIMS) is widely used in the semiconductor material

characterization.4,5,6 The process allows the in-depth detection

of various isotopes on the top or below the surface of a

sample.7 The mass interference between isotopes and matrix

element makes the data interpretation process complex.

Particularly, the detection of phosphorous in silicon suffers

from the mass interference. The quantification of

phosphorus or other dopant is critical for the performance

of the electronics devices from various processes, such as,

metal organic vapor phase epitaxy (MOVPE),8 atomic

layer deposition (ALD)9 and chemical vapour deposition

(CVD).10 The analysis of phosphorus in the silicon thin films

were executed in a high mass resolution (m/Δm>10000)11

magnetic sector SIMS to separate phosphorus-31 (31P) and

hydrogenated silicon (30Si1H) isotopes.12 The magnetic sector

SIMS such as IMS-6f from Cameca, France, was used to

eliminate the mass interference during data acquisition.13,14 In

the years 2010-2020, time of flight (ToF) SIMS is being

widely used in academia due to its high sensitivity to trace

elements, two dimensional elemental mapping (imaging)

capacity, surface analysis of insulating/conducting material

and the depth profiling at nano meter scale.15 High depth

resolution ToF-SIMS with charge compensation has also

been used to examine secondary ion depth profiles relative

to P and Si elements.16

In this article, phosphorus doped silicon thin film of

180 nm was grown on glass substrate using hot wire

chemical vapor deposition (HWCVD) technique for possible

applications in optoelectronic devices. The phosphorus
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concentration in the hydrogenated silicon thin film on glass

was evaluated by ToF-SIMS using dynamic mode of

operation. To avoid the mass interference, only 31P isotope

in silicon was measured. The matrix elements of silicon

isotopes (30Si, 30Si1H) were detected in separate measurements.

The quantitative analysis of counts to concentration conversion

was done following two routes, standard relative sensitivity

factor (RSF) with the silicon matrix element and SIMetric

software (SW) estimation from reference sample without

the silicon matrix element.

Experimental

Sample Preparation

Three samples were studied in this work. i) The

phosphorus doped microcrystalline silicon thin films were

grown on glass substrate using gas flow ratio of

SiH4:H2:PH3 = 2:50:1 sccm as an emitter layer in p-i-n

diode17. The thin silicon film was synthesized by HWCVD

technique at 350oC substrate temperature with a tantalum

filament kept at a temperature of 1650oC.18 The growth

duration was 45 min for 180 nm thin film.19 ii) An infrared

laser from single emitter diode source with wavelength

1064 nm by SPI lasers limited, Germany was used to

anneal the phosphorus doped silicon film on glass.20 iii)

The reference phosphorous sample was prepared in a

diffusion furnace at 890oC for 15 min on 2 inch diameter

n-type silicon wafer.21 This diffusion process allows the

phosphorus atoms to diffuse at about 600 nm.

Depth Profile analysis

The total crater depth was measured using the Veeco

Dektak 150 surface profiler and the corresponding data is

given in Figure 1 and Table 1. The sputtering rate for the

Reference phosphorus diffused silicon wafer is 0.28 nm/s,

where the crater depth is 1137.2 nm as shown in Figure

1(i) and total sputtering duration is 4020 s. The sputtering

rate for 87-nSi-Glass phosphorus doped silicon thin film on

glass using HWCVD is 0.30 nm/s, where the total crater

depth is 242.5 nm as shown in Figure 1(ii) and total

sputtering duration is 820 s.

ToF-SIMS data acquisition

To measure the secondary ion counts, the PHI nano ToF

II TRIFT was used from Physical Electronics, MN, USA.

In this process, a 10 ns pulsed liquid metal ion gun (LMIG)

uses Gallium (Ga+) sources to produce ions as primary ion

beam to ionise the surface molecules.22 The beam energy

was kept 30 kV with a beam current of 15 nA and the

raster size 300 × 300 μm2.23 The caesium ion (Cs+) gun

was used as sputtering tool to produce the negative

secondary ions.24 In the literature, dual beam IONTOF IV

from Germany was used to profile phosphorus concentration

with the Ga+ ion gun at 25 kV, 1 pA for analysis and the

Cs+ ion gun at 1 kV, 80 nA for sputtering in the negative

mode of operation.25 In this study, the phosphorus isotope

(31P) was detected as secondary ions. The silicon isotope

(30Si) as the matrix elements were detected in a separate

measurement from a p-type silicon wafer.26 The 30Si

isotope counts was measured independently to avoid mass

interference as well as to enhance the signal intensity.27 The

optimized scanning parameters for better depth resolution and

improved detection limit are given in the Table 2. 

Table 1. Veeco Dektak 150 surface profiler data for the crater depth and the scanning length.

Sample name Cursor position
Cursor width 

(mm)

X-axis position 

(mm)

Crater length

(mm) 

Y-axis position

(nm)

Crater depth 

(nm)

Reference phosphorus
Left 0.08 0.1534

0.9028
0.9088

1137.18
Middle 0.08 0.6049 -1093.40

87-nSi-Glass
Right 0.08 0.9103

0.8764
0.6210

242.45
Middle 0.08 0.4721 -243.31

Figure 1. The total depth of the crater for i) reference phosphorus diffused silicon wafer is 1137.18 nm and for ii) 87-nSi-Glass

phosphorus doped silicon thin film using HWCVD on glass is 242.45 nm measured using the Veeco Dektak 150 surface profiler.
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Results and Discussion

The ToF-SIMS signal is interpreted using relative

sensitivity factor for Phosphorus Counts to concentration

conversion. The concentration of phosphorus (CP) in

silicon is calculated using the following equations;

equation 1 using the silicon matrix element and equation 2

without the matrix element,4

(1)

(2)

Here, CP is Concentration of phosphorus in silicon,

RSFP(Si) is the relative sensitivity factor of phosphorus in

silicon,28 %30Si is the fractional isotope abundance of 30Si

isotope in silicon,29 IP(Si) is the intensity of phosphorus

isotope (31P) counts using Cs+ gun, I30Si is the intensity of

silicon isotope (30Si) counts on a p-type silicon wafer26

using ToF-SIMS and RSFP(Si).EST. is the relative sensitivity

factor of phosphorus in silicon estimated using SIMetric

SW peak fitting tool from the 408-Rreference phosphorus

diffused silicon wafer. Table 3 shows the part of data used

in the phosphorus counts to concentration conversion

calculation. The complete data table is provided with the

article as supplementary material.

The Table 3 is used to plot phosphorus concentration

versus crater depth curve for the i) Reference Phosphorus,

ii) 87-nSi-Glass and iii) 87-nSi-Glass-Laser as shown in

Figure 2 and 3 respectively. Figure 2 shows the concentration

of phosphorus, diffused in n-type silicon wafer for

Reference Phosphorus sample along with the SIMetric SW

estimated curve. The concentration of phosphorus at the

top surface of the silicon wafer is 2 × 1020 atoms/cm3,

which is in agreement with the value 4.3 × 1020 atoms/cm3

obtained using CAMECA SC Ultra high resolution SIMS

by Beljakowa et al..9 Figure 3 shows the concentration of

phosphorus in (i) 180 nm microcrystalline silicon thin film

grown on glass using HWCVD and (ii) infrared laser

(1064 nm) annealed micro crystalline silicon thin film grown

on glass using HWCVD along with the corresponding

SIMetric SW estimated curve respectively. From Figure

CP RSFP Si( ) %
30
Si×

IP Si( )

I30Si

----------
⎝ ⎠
⎛ ⎞×=

CP RSFP(Si).EST. IP(Si)×=

Table 2. ToF-SIMS scanning parameters for the detection of phosphorus isotope (31P) in silicon thin film using caesium ion (Cs+)

sputtering gun.

Sample Name
Phosphorus thin film 

thickness (nm)

Sputtering beam 

current (A)

Sputtering beam 

energy (kV)

Sputtering beam 

raster area (µm2)

Sputtering 

duration (s)

Mass analyser 

analysing duration (s)

408-Reference phosphorus 1000

8.23 × 10-8 3 300 × 300 20 60421-87-nSi-Glass 180

422-87-nSi-Glass-Laser 180

Table 3. Part of the data for the conversion of ToF-SIMS counts to concentration-depth profile. The complete data set is provided as

supportive material.

Crater depth 

[Cycle number × Sputtering 

Duration (s) × Sputtering rate (nm/s)] (nm)

Measured 

intensity of 31P 

isotope

(counts)

Measured intensity of 
30Si in p-type 

silicon wafer26 

(counts)

Phosphorus 

concentration

(using Eq. 1)

(atoms/cm3) 

Phosphorus concentration 

SIMetric SW estimation

(using Eq. 2)

(atoms/cm3)

Percent 

difference

(%)

i) 408-Reference phosphorus diffused silicon wafer

5.66 3023 33616 3.07E+20 2.29E+20 29

11.32 2884 46138 2.13E+20 2.18E+20 2

16.97 2913 47072 *2.11E+20 **2.20E+20 4

ii) 421-87-nSi-Glass phosphorus doped silicon thin film on glass using HWCVD 

5.91 7947 33616 8.06E+20 6.01E+20 29

11.83 5800 46138 4.29E+20 4.38E+20 2

17.74 5192 47072 3.76E+20 3.93E+20 4

iii) 422-87-nSi-Glass-Laser phosphorus doped silicon thin film on glass using HWCVD 

5.91 10924 33616 1.11E+21 8.26E+20 29

11.83 15561 46138 1.15E+21 1.18E+21 2

17.74 15866 47072 1.15E+21 1.20E+21 4

*Using equation 1, CB = 1.1 × 1023 × 0.031 × ( ) = 2.11 × 1020 atoms/cm3

** Using equation 2, CB = 7.56 × 1016 × 2913= 2.2 × 1020 atoms/cm3

2913

47072
---------------
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3(i), the concentration of phosphorus thin film is

3.25 × 1020 atoms/cm3 at the top and this remain uniform

over the top 180 nm. The Figure 3(ii) shows that, the laser

irradiation caused significant changes in the thin film. It is

seen that after the laser irradiation, the phosphorus

concentration is no longer uniform. It has increased to

1.2 × 1021 atoms/cm3 near the surface of the sample and

decreased along the film thickness. This non-homogeneous

laser absorption of silicon thin film is characterised using

Raman imaging which is published elsewhere.30 Furthermore,

with laser irradiation, the silicon film melts and then starts

to solidify from the position closest to the glass substrate.

So, the film at the top surface solidifies later. The phosphorus

has a segregation coefficient of around 0.35 which leads to

an increase in the phosphorus concentration at the top

surface as the top portion solidifies first.31,32 The phosphorus

concentration versus depth profiles of the RSF calculated

and the SIMetric SW estimated are in agreement with a

percent difference of about 3% at 100 nm depth, 12% at

200 nm, 20% 300 nm and 25% at 400 nm.

Conclusion

The concentration of phosphorus in silicon thin film

grown on glass using HWCVD was estimated using ToF-

SIMS technique in dynamic mode of operation. A phosphorus

diffused silicon wafer was used as reference sample. The

relative sensitivity factor along with silicon matrix element

was used to interpret the ToF-SIMS data for each sample.

Using SIMetric SW peak fitting tool, with the reference

sample, the RSF was determined without the silicon matrix

element data. The phosphorus counts to concentration

conversion was performed using two routes, calculated

RSF with silicon matrix element and simulated RSF

procedure from reference sample. For the both procedures,

the phosphorus concentration versus depth profiles were

plotted which agree with a percent difference of about 3% at

100 nm depth. The concentration of phosphorus in silicon

was determined in the range of 1019~1021 atoms/cm3 which is

comparable with the value obtained using magnetic sector

high resolution SIMS. The phosphorus in silicon detected on

the top surface of phosphorus doped silicon thin film on glass

was 3.25 × 1020 atoms/cm3. The results of this study will be

useful for the detection and quantification of impurities in

wide area of thin films using ToF-SIMS technique

overcoming the mass interferences between isotopes.
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