• Title/Summary/Keyword: phosphorous acid

Search Result 140, Processing Time 0.026 seconds

The Effect on the Nutritional Value of Beef Leg and Rib Bone Soup by Boiling Time (가열시간이 소 사골과 갈비뼈의 영양성분 용출에 미치는 영향)

  • Kim, Myung-Sun
    • Journal of the Korean Society of Food Culture
    • /
    • v.21 no.2
    • /
    • pp.161-165
    • /
    • 2006
  • This study was examined the contents of solid, calcium, phosphorous, magnesium, protein, amino acid and collagen in beef leg and rib bone soup by various boiling time(1, 2, 4, 8, 12 hours). The results were as follows; as the boiling time increased, contents of solid, calcium, phosphorous, magnesium, protein, amino acid and collagen were increased. However, the boiling time increased, cloudiness (T%) was decreased. When we compared beef bone leg with the rib bone soup, rib bone soup was much nutritional contents than leg bone soup. In sensory evaluation of the soup boiled for 12 hours, added with 0.8% salt, rib bone stew was highly evaluated than leg bone soup.

Cholesterol-Lowering Effect and Anticancer Activity of Kimchi and Kimchi Ingredients (김치와 김치재료의 콜레스테롤 저하 및 항암효과)

  • 이재준;정영기
    • Journal of Life Science
    • /
    • v.9 no.6
    • /
    • pp.743-752
    • /
    • 1999
  • The purpose of the paper is to explore the current knowledge on the nutritional evaluation, cholesterol-lowering effect and antitumor activity of kimchi and its ingredients(Korean cabbage, garlic, red pepper powder, ginger and onion). Kimchi contains high contents of nutrients such as vitamins(ascorbic acid, $\beta$-carotene and vitamin B complex), minerals(calcium, potassium, iron and phosphorous), essential amino acids and dietary fiber. Kimch also contains high levels of lactic acid bacteria, allicin, capsaicin, organic acid, phenol compounds, flavonoid and sulfur compounds. The dietary fiber and lactic acid bacteria isolated from kimchi are effective in improving intestinal microflora of human. Isoluble dietary fiber shows anticancer activity, but soluble dietary fiber shows hypocholesterolemic effect. Lactic acid bacteria isolated from kimchi acts as a hypocholesterolemic or anticancer agent. A major ingredient of kimchi is mainly cruciferous and allium family vegetables, which were also reported to prevent cancer and atherosclerosis. It is suggested that kimchi is important not only as one of the traditional fermented Korean food but also as therapeutic agent for carcinogenesis and hypercholesterolemic state.

  • PDF

Thermal Properties and Flame Retardancy of Poly(amic acid)/organoclay Nanocomposites (Poly(amic acid)/organoclay 나노복합체의 열적특성 및 난연성)

  • Kim, Sun;Yoon, Doo-Soo;Jo, Byung-Wook;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.42 no.3
    • /
    • pp.177-185
    • /
    • 2007
  • Polyamic acid(PAA)/organoclay nanocomposites containing phosphorous were prepared by solution blending of phosphorylated PAA(PPAA) and organically modified montmorillonite(O-MMT) as a type of layered clays. The nanocomposites were characterized by FT-IR, DSC, TGA, PCFC, SEM, and XRD. The preparation of nanocomposites was confirmed by FT-IR and XRD. SEM pictures showed that the organoclay was dispersed well in the PAA matrix relatively. XRD results indicated that the O-MMT layers were intercalated. The thermal stability and flame retardancy of O-MMT/PPAA nanocomposites were higher than those of pure PAA. PCFC results also showed that the heat release capacity and total heat release values of O-MMT 4 wt%/PPAA-0.2, 0.4, 0.6 composites were decreased with increasing the mole ratio of phosphorous. It was found that the nanocomposite films had the potential to be used as a fire safe material.

Oxidative Dehydrogenation of 1-butene over BiFe0.65MoP0.1 Catalyst: Effect of Phosphorous Precursors (BiFe0.65MoP0.1 촉매 상에서 1-부텐의 산화탈수소화 반응 : 인 전구체의 영향)

  • Park, Jung-Hyun;Youn, Hyun Ki;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.824-830
    • /
    • 2015
  • The influence of phosphorous precursors, $NH_4H_2PO_4$, $(NH_4)_2HPO_4$, $H_3PO_4$, $(C_2H_5)_3PO_4$, and $P_2O_5$, on the catalytic performance of the $BiFe_{0.65}MoP_{0.1}$ catalysts in the oxidative dehydrogenation of 1-butene to 1,3-butadiene was studied. The catalysts were characterized by XRD, $N_2$-sorption, ICP, SEM and TPRO analyses. It was not observed big difference on the physical properties of catalysts in accordance with used different phosphorous precursors, however, the catalytic performance was largely depended on the nature of the phosphorous precursors. Of various precursors, the $BiFe_{0.65}MoP_{0.1}$ oxide catalyst, which was prepared from a phosphoric acid precursor, showed the best catalytic performance. Conversion and yield to butadiene of the catalyst showed 79.5% and 67.7%, respectively, after 14 h on stream. The cation of phosphorous precursors was speculated to affect the lattice structure of the catalysts during catalyst preparation and this difference was influenced on the re-oxidation ability of the catalysts. Based on the results of TPRO, it was proposed that the catalytic performance could be correlated with re-oxidation ability of the catalysts.

The Effect of Prunus Mume Supplementation on Energy Substrate Levels and Fatigue Induction Factors (매실 추출물 섭취가 에너지기질 및 피로물질 변화에 미치는 영향)

  • Paik, Il-Young;Chang, Woe-Ryong;Kwak, Yi-Sub;Cho, Su-Youn;Jin, Hwa-Eun
    • Journal of Life Science
    • /
    • v.20 no.1
    • /
    • pp.49-54
    • /
    • 2010
  • The purpose of this study is to examine the effect of Prunus mume supplementation on changes of energy substrate (glucose, FFA) and fatigue factors (lactate, ammonia, phosphorous) in the performance of exercise. The subjects of this study were 15 male university students. The exercise test was performed for 30 minutes at 75% $VO_2max$ on the treadmill and conducted both before and after administering Prunus mume for 6 weeks. Through Prunus mume supplementation, the accumulation of such fatigue factors as lactate, ammonia, and phosphorous along with concentration of glucuse decreased, but the concentration of FFA increased. From the study, it can be seen that Prunus mume plays a positive role for the use of energy substrates and accumulated fatigue factors.

Changes of Amino Acid and Fatty Acid contents in Raw Flesh and Cooted Broth of Carp During Boiling Time (잉어육과 잉어자숙(漂熟)중의 아미노산 및 지방산조성의 변화)

  • Koo, Mi-Hyun;Sung, Chong-Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.15 no.3
    • /
    • pp.222-228
    • /
    • 1986
  • Contents of crude protein, calcium phosphorous, fatty acids, and amino acids in raw flesh and cooked broth of carp were determined. Quantative changes of the nutrients in cooked broth of carp were investigated during boiling time (3,6,9 and 12 hours). In case of quantative changes of the nutrients such as crude protein, calcium, phosphorous, fatty acids and amino acids in raw flesh of carp and cooked broth of carp during boiling time: All nutrients were increased with boiling time. And they marked maximum level at 12 hours of cooking time except calcium and fatty acid. The amount of unsaturated fatty acid to total fatty acids was larger than those of saturated fatty acid to total fatty acids, The amount of oleic acid and linoleic acid was larger than any other fatty acid. The major components of essential amino acids were shown to be valine, leucine, lysine and arginine, and the minor conponents of essential amino acids were methionine and histidine. In nonessential amino acids, the major components were aspartic acid, glutamic acid and alanine, and the minor components were serine, proline and cystine. The results suggest that the raw flesh and the cooked broth of carp are good sources as protein, fat and phosphorous.

  • PDF

The Effect of Nutrient Amendments on Biodegradability of Kerosene and Growth of Kerosene-degrading Microorganisms (영양원 변화가 Kerosene 분해율 및 분해균주 성장에 미치는 영향)

  • Chung, Kyu-Hyuck
    • Journal of Environmental Health Sciences
    • /
    • v.25 no.3
    • /
    • pp.7-12
    • /
    • 1999
  • Bioremediation is the technology to harness nature's biodegradative capabilities to remove or detoxify pollutions that threaten public health as environmental contaminants. Composting may become one of major bioremediation technologies for treating soils contaminated with petroleum if the fate of contaminants during composting is better understood Most composting research of petroleum was primarily focused on removing contaminant by optimizing composting conditions. Accordingly, laboratory feasibility studies may be useful to establish a realistic basis in co-composting complex substrate such as petroleum hydrocarbons. The purpose of this study was to assess the optimal conditions of kerosene biodegradation following supplementation with nutrient amendments under simulated composting conditions. Although it increased the growth of bacterial consortium, addition of co-substrates 0.5%(w/v) such as acetic acid, citric acid, glucose, and malic acid was not beneficial. Combination of nitrogen and phosphorous source enhanced kerosene biodegradation and reduced VOC evolution. These results showed that kerosene was able to utilize in bioremediation technology.

  • PDF

Effect of Pretreatment on the Dissolution of Aluminum Alloy during Hydration Process (수화과정에서 전처리가 알루미늄 합금의 용출에 미치는 효과)

  • Lee, Byoung-Gu;Lee, Hoyeon;Tak, Yongsug
    • Corrosion Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.215-219
    • /
    • 2013
  • Aluminum alloy(3003) can be dissolved during hydration process with hot tap water. In order to increase the stability of aluminum alloy, it was pretreated with anodization and phosphoric acid before hydration process. The effect of pretreatment on the surface property changes was analyzed with X-ray Photoelectron Spectroscopy (XPS) and Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES) and their results supported that the increase of hydroxyl group (-OH) on the surface formed during anodization and phosphorous acid treatment prevented the dissolution of aluminum alloy during hydration process at high temperature.