• 제목/요약/키워드: phosphor luminescence

검색결과 279건 처리시간 0.037초

"환원분위기에 따른 ZnO:Zn 형광체의 합성 및 그 형광특성"에 대한 논평 (Comments on "Synthesis of ZnO:Zn Phosphors with Reducing Atmosphere and Their Luminescence Properties")

  • 김은동
    • 한국세라믹학회지
    • /
    • 제37권7호
    • /
    • pp.726-729
    • /
    • 2000
  • The entitled report revealed that ZnO phosphor samples treated at different temperatures under a given reduction atmosphere show the radiation brightness increase with increase of temperature up to about 900$^{\circ}C$ but become decreasing beyond the temperature. The brightness deterioration with curing temperature at higher temperatures was explained by the decrease of excess zinc ions resulted from their evaporation. The comments will open possibility for different discussions on the experimental result by introducing numerical relationships between the concentration of the native defects and the curing condition.

  • PDF

적색 형광체 Gd2-x-yLixEuyO3의 발광 특성 (Luminescence Properties of Red Phosphor Gd2-x-yLixEuyO3)

  • 조신호;변송호;김동국;박중철
    • 한국전기전자재료학회논문지
    • /
    • 제15권3호
    • /
    • pp.258-263
    • /
    • 2002
  • We present a new toed phosphor, $Gd_{2-x-y}Li_xEu_yO_3$ with superior luminescent Properties compared to the commercially available red phosphor $Y_2O_3:Eu^{3+}$. The phosphor, with a diameter of about $2\mu\textrm{m}$, consists of the psedospherical particles in a regular array. The photoluminescence measurements as a function of the laser power and the Eu mole fraction were performed at zoom temperature The luminescence intensity linearly increases as both the laser power and the Eu mole fraction Increase. As for the dependence on cathodoluminescence, the incorporation of Eu and Li ions into $Gd_2O_3$ lattice brings about an increase in luminescent efficiency. The highest emission intensity for the phosphor occurs at the applied voltage of 500 V, its value is larger than that of $Y_2O_3:Eu^{3+}$ powder by 70%.

$CaAl_2O_4:Eu^{2+}$ 청색(靑色) 형광체(螢光體)의 $Nd^{3+}$ 도핑 최적화(最適化)에 관한 연구(硏究) (Optimization of $Nd^{3+}$ ion co-doping in $CaAl_2O_4:\;Eu^{2+}$ blue phosphor)

  • ;류호진
    • 자원리싸이클링
    • /
    • 제16권5호
    • /
    • pp.46-50
    • /
    • 2007
  • [ $Eu^{2+},\;Nd^{3+}$ ]로 도핑된 $CaAl_2O_4$ 청색 형광체를 고상반응법으로 제조하였다. 1 mol% $Eu^{2+}$로 doping된 형광체에 다양한 조성의 $Nd^{3+}$를 co-doping함에 따라 고휘도, 장잔광 특성을 보였다. 제조한 형광체에 대하여 XRD, SEM, TEM, 빛발광 특성을 조사하였다. $CaAl_2O_4:Eu^{2+}:Nd^{3+}$의 넓은 밴드의 UV로 여기된 빛발광 특성이 $Eu^{2+}$$4f^65d^1$에서 $4f^7$ 상태로 천이에 의해 기인된 청색영역(${\lambda}_{max}=440\;nm$)에서 관찰되었다. $Nd^{3+}$로 co-doping한 형광체는 여기광을 차단하였을 때 장잔광 발광 특성을 나타내었다.

이가 양이온 금속 친환 및 유기 첨가제를 이용하여 분무열분해법으로 제조된 Y2O3:Eu3+ 적색 형광체의 휘도 개선 (Photoluminescence Enhancement of Y2O3:Eu3+ Red Phosphor Prepared by Spray Pyrolysis using Aliovalent Cation Substitution and Organic Additives)

  • 민병호;정경열
    • 한국분말재료학회지
    • /
    • 제27권2호
    • /
    • pp.146-153
    • /
    • 2020
  • The co-doping effect of aliovalent metal ions such as Mg2+, Ca2+, Sr2+, Ba2+, and Zn2+ on the photoluminescence of the Y2O3:Eu3+ red phosphor, prepared by spray pyrolysis, is analyzed. Mg2+ metal doping is found to be helpful for enhancing the luminescence of Y2O3:Eu3+. When comparing the luminescence intensity at the optimum doping level of each Mg2+ ion, the emission enhancement shows the order of Zn2+ ≈ Ba2+ > Ca2+ > Sr3+ > Mg2+. The highest emission occurs when doping approximately 1.3% Zn2+, which is approximately 127% of the luminescence intensity of pure Y2O3:Eu3+. The highest emission was about 127% of the luminescence intensity of pure Y2O3:Eu3+ when doping about 1.3% Zn2+. It is determined that the reason (Y, M)2O3:Eu3+ has improved luminescence compared to that of Y2O3:Eu3+ is because the crystallinity of the matrix is improved and the non-luminous defects are reduced, even though local lattice strain is formed by the doping of aliovalent metal. Further improvement of the luminescence is achieved while reducing the particle size by using Li2CO3 as a flux with organic additives.

The Origin of Change in Luminescent Properties of ZnMgS:Mn Thin Film Phosphor with Varying Annealing Temperature

  • Lee, Dong-Chin;Kang, Jong-Hyuk;Jeon, Duk-Young;Yun, Sun-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1576-1579
    • /
    • 2005
  • With varying rapid thermal annealing (RTA) temperature, luminescence properties of $Zn_{0.75}Mg_{0.25}S:Mn$ thin film deposited by RF-magnetron sputtering technique were investigated. In this study, $Zn_{0.75}Mg_{0.25}S:Mn$ thin film phosphor showed more red emission than those of the previous studies when annealed around 600 or $650^{\circ}C$. Although all samples were deposited from identical source composition, a main peak wavelength of photoluminescence spectra of $Zn_{0.75}Mg_{0.25}S:Mn$ shifted toward shorter wavelengths depending upon increase of RTA temperature. The same dependence of wavelength on RTA temperature was also observed in cathodoluminescence as well as electroluminescence measurements. It was revealed that the change of the luminescence properties were originated from structural changes in $Zn_{0.75}Mg_{0.25}S:Mn$ thin film phosphor from cubic to hexagonal phases analyze using conventional X-ray pole figure mapping. The phase transition would be the origin of luminescence property changes with respect to RTA temperature.

  • PDF

자외선 여기용 청색 및 황색 형광체의 발광특성 (Luminescence Characteristics of Blue and Yellow Phosphor for Near-Ultraviolet)

  • 최경재;박정규;김경남;김창해;김호건
    • 한국세라믹학회지
    • /
    • 제43권5호
    • /
    • pp.304-308
    • /
    • 2006
  • We have synthesized a $Eu^{2+}-activated\;Sr_3MgSi_2O_8$ blue phosphor and $(Sr,Ba)_2SiO_4$ yellow phosphor and prepared white LEDs by combining these phosphors with a InGaN UV LED chip. Three distinct emission bands from the InGaN-based LED and the two phosphors are clearly observed at 405 nm, 460 nm and at around 560 nm, respectively. The 405 nm emission band is due to a radiative recombination from a InGaN active layer. This blue emission was used as an optical transition of the $Sr_3MgSi_2O_8:Eu$ blue phosphor and $(Sr,Ba)_2SiO_4:Eu$ yellow phosphor. The 460 nm and 560 nm emission band is ascribed to a radiative recombination of $Eu^{2+}$ impurity ions in the $Sr_3MgSi_2O_8:Eu$ and $(Sr,Ba)_2SiO_4$ host matrix. As a consequence of a preparation of UV White LED lamp using the $Sr_3MgSi_2O_8:Eu$ blue phosphor and $(Sr,Ba)_2SiO_4:Eu$ yellow phosphor, the highest luminescence efficiency was obtained at the ration of epoxy/two phosphor (1/0.2361). At this time, the CIE chromaticity was CIE x = 0.3140, CIE y = 0.3201 and CCT (6500 K).

Effect of mixed alkaline earth doping on phosphorence properties of $BaAl_2O_4:Eu^{2+}$, $Dy^{3+}$

  • Singh, B.K.;Ryu, R.J.
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2006년도 추계학술대회 발표 논문집
    • /
    • pp.22-25
    • /
    • 2006
  • Long lasting phosphor materials are in great demand for their applications in the area of light emitting diodes (LEDs), commercial displays and warning signals. After glow longevity, brightness, photo-resistance and chemical and environment stability are most important qualities that are desired for these materials. Alumina as host lattice with various rare earth elements has been found to be good at the same time inexpensive material for the synthesis of the phosphor materials. This communication explored the effect of mixed rare earth metal on the luminescence properties of these materials for the first time. Various permutations and combinations of $Sr^{2+}$ and $Ba^{2+}$ have been investigated in order to achieve robust and high luminescence characteristics in the tailored phosphor materials.

  • PDF

Synthesis and luminescence characterization of ZnS:Cu,Al phosphor by combustion method

  • Jeong, Young-Ho;Myung, Kwang-Shik;Park, Jin-Won;Hua, Yang;Han, Sang-Do
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.1009-1012
    • /
    • 2003
  • A novel powder processing technique for the preparation of copper activated zinc sulfide (ZnS:Cu,Al) phosphor by combustion process has been proposed. Exothermic reaction between dissolved copper nitrate and carbohydrazide give small-sized particles in presence of alkali metal halides at lower temperature than the traditional method of preparation. This new route takes less than five minutes and requires much less energy. The optical and luminescence characteristics of ZnS:Cu,Al phosphor thus prepared were found to be enhanced significantly. Carbohydrazide acted as fuel at $500^{\circ}C$ with rapid heating and then the phosphors obtained were heated at $900^{\circ}C$ in an inert atmosphere for 3hrs to get better luminescent properties.

  • PDF

Fabrication of Yellow Lighting Phosphor for Low-voltage Display Applications

  • Shin, Sang-Hoon;You, Yong-Chan;Lee, Sang-Hyuk;Zang, Dong-Sik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.1030-1033
    • /
    • 2003
  • ZnS:Mn has been studied as a yellow phosphor for the application to fluorescent displays operated at low voltage. It was found that luminescence of $Mn^{2+}$ ion from hexagonal phase of ZnS was suitable for the display applications. The main emission peak was shifted to shorter wavelength when Cu ions were doped. The luminescence color of ZnS:Mn phosphor could be changed with decrease of its brightness.

  • PDF

ZnMgS:Mn 박막 형광체의 RTA 온도 변화에 따른 발광 특성 의존성 (Dependence of luminescence property of ZnMgS:Mn thin film phosphor on RTA temperature)

  • 이동진;윤선진;전덕영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 춘계학술대회 논문집 디스플레이 광소자분야
    • /
    • pp.102-105
    • /
    • 2004
  • With varying rapid thermal annealing (RTA) temperature, luminescent properties of ZnMgS:Mn thin film sputter-deposited with one target were measured. Although all samples have the same composition, $Zn_{1-x}Mg_xS:Mn$ (x=0.25) can emit luminescence between 580 and 614 nm, which is controlled by only RTA temperature. It is understood that the energy band gap shift of ZnMgS:Mn thin film phosphor occurs with varying RTA temperature.

  • PDF