• Title/Summary/Keyword: phosphates

Search Result 304, Processing Time 0.021 seconds

The Effects of Thiamin on the Fruiting of Lentinula edodes (표고버섯 자실체 형성에 미치는 티아민의 영향)

  • 신갑균;이상원;김사익
    • Food Science and Preservation
    • /
    • v.6 no.4
    • /
    • pp.500-505
    • /
    • 1999
  • The investigation was carried out to identify the active constituent in yeast extract for fruit body formation of Lentinula edodes. The result suggests that free thiamin which is hewn as the active substance for the fruiting of L edodes, was detected but thiamin mono, di, three phosphates were not detected in the yeast extract produced by Difco Co.. Therefore, the thiamin content of the yeast extract was determined, the yeast extract was fractionated to five portion by the post-column fluorescence method. The content of thiamin in yeast extract( 1g) was 0.436mg as thiamin hydrochloride. It was found that 76% of the total thiamin(0.332mg) was contained in fraction II. About 20% of the total thiamin(0.087mg) was present in fraction I, but not in fractions III, IV and V. In accordance with the contents of thiamin in the fractions, the fruit body formation was the highest by the treatment of fraction II(100%) and followed by fraction I (60%), V(50%), III(30%). Thiamin did not influence for the vegetative mycelial growth of L. edodes, but be used for fruit body formation.

  • PDF

In-Situ Fabrication of TCP/Al2O3 and Fluorapatite/Al2O3 Composites by Normal Sintering of Hydroxyapatite and Al2O3 Powder Mixtures (Hydroxyapatite와 Al2O3 혼합분말의 상압소결에 의한 TCP/Al2O3 및 Fluorapatite/Al2O3 복합재료의 In-Situ 제조)

  • Ha, Jung-Soo;Han, Yoo-Jeong
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.129-135
    • /
    • 2019
  • A powder mixture of 70 wt% $Al_2O_3$ and 30 wt% hydroxyapatite (HA) is sintered at $1300^{\circ}C$ or $1350^{\circ}C$ for 2 h at normal pressure. An $MgF_2$-added composition to make HA into fluorapatite (FA) is also prepared for comparison. The samples without $MgF_2$ show ${\alpha}$ & ${\beta}$-tricalcium phosphates (TCPs) and $Al_2O_3$ phases with no HA at either of the sintering temperatures. In the case of $1,350^{\circ}C$, a $CaAl_4O_7$ phase is also found. Densification values are 69 and 78 %, and strengths are 156 and 104 MPa for 1,300 and $1,350^{\circ}C$, respectively. Because the decomposition of HA produces a $H_2O$ vapor, fewer large pores of $5-6{\mu}m$ form at $1,300^{\circ}C$. The $MgF_2$-added samples show FA and $Al_2O_3$ phases with no TCP. Densification values are 79 and 87 %, and strengths are 104 and 143 MPa for 1,300 and $1,350^{\circ}C$, respectively. No large pores are observed, and the grain size of FA ($1-2{\mu}m$) is bigger than that of TCP ($0.7{\mu}m{\geq}$) in the samples without $MgF_2$. The resulting $TCP/Al_2O_3$ and $FA/Al_2O_3$ composites fabricated in situ exhibit strengths 6-10 times higher than monolithic TCP and HA.

Crystal Structure and Magnetic Properties of Sodium-Iron Phosphates NaFe0.9Mn0.1PO4 Cathode Material

  • Seo, Jae Yeon;Choi, Hyunkyung;Kim, Chul Sung;Lee, Young Bae
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1863-1866
    • /
    • 2018
  • The sodium-iron phosphate maricite-$NaFe_{0.9}Mn_{0.1}PO_4$ was synthesized using the ball mill method. The crystal structure and magnetic properties of the prepared materials were studied using X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and $M{\ddot{o}}ssbauer$ spectroscopy. Structural refinement of maricite-$NaFe_{0.9}Mn_{0.1}PO_4$ was analyzed using the FullProf program. From the XRD patterns, the crystal structure of maricite-$NaFe_{0.9}Mn_{0.1}PO_4$ was found to be orthorhombic with the space group Pmnb. The lattice parameters of maricite-$NaFe_{0.9}Mn_{0.1}PO_4$ are as follows: $a_0=6.866{\AA}$, $b_0=8.988{\AA}$, $c_0=5.047{\AA}$, and $V=311.544{\AA}^3$. Maricite-$NaFePO_4$ has an edge-sharing structure that consists of $FeO_6$ octahedral. Under an applied field of 100 Oe, the temperature dependences of zero-field-cooled (ZFC) and field-cooled (FC) curves were measured from 4.2 to 295 K. $M{\ddot{o}}ssbauer$ spectra were also recorded at various temperatures ranging from 4.2 to 295 K. We thus confirmed that the $N{\acute{e}}el$ temperature of $NaFe_{0.9}Mn_{0.1}PO_4$ ($T_N=14K$) was lower than that of maricite-$NaFePO_4$ ($T_N=15K$).

Physical and Biochemical Mechanisms Associated with Beef Carcass Vascular Rinsing Effects on Meat Quality: A Review

  • Hwang, Koeun;Claus, James R.;Jeong, Jong Youn;Hwang, Young-Hwa;Joo, Seon-Tea
    • Food Science of Animal Resources
    • /
    • v.42 no.3
    • /
    • pp.389-397
    • /
    • 2022
  • Carcass vascular rinsing and chilling involves infusing a chilled isotonic solution (98.5% water and a blend of mono- and di-saccharides and phosphates) into the vasculature immediately upon exsanguination. Primary purposes of carcass vascular rinsing are to (1) effectively remove residual blood from the carcass; (2) lower internal muscle temperature rapidly; and (3) optimize pH decline by effective delivery of glycolytic substrates in the rinse solution. Previous studies have revealed that the beef carcass vascular rinsing early postmortem positively affects meat quality, product shelflife, and food safety. Thus, the objective of this review is to provide a more comprehensive understanding of the physical and biochemical mechanisms associated with beef carcass vascular rinsing, focusing on the relationship between quality attributes (CIE L*, a*, b*; chemical states of myoglobin; oxygen consumption and sarcomere length) and muscle metabolic response to various substrate solutions (Rinse & Chill®, fructose, sodium phosphate, and dipotassium phosphate) that stimulate or inhibit the rate of glycolysis early postmortem. In addition, this review discusses the absence of metabolite residues (phosphorus, sodium, and glucose) related to the application of the chilled isotonic solution. This review primarily focuses on beef and as such extending the understanding of the mechanisms and meat quality effects discussed to other species associated with vascular rinsing, in particular pork, may be limited.

Stabilization of As and Heavy Metals in Farmland Soil using Iron Nanoparticles Impregnated Biochar (비소 및 중금속의 식물체 전이감소를 위한 철 나노 입자가 담지된 바이오차의 농경지 토양 안정화제 적용성 평가)

  • Koh, Il-Ha;Kim, Jung-Eun;Park, So-Young;Choi, Yu-Lim;Kim, Dong-Su;Moon, Deok Hyun;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.6
    • /
    • pp.1-10
    • /
    • 2022
  • This study assessed the feasibility of iron oxide nanoparticles impregnated with biochar (INPBC), derived from woody biomass, as a stabilizing agent for the stabilization of farmland soil in the vicinity of an abandoned mine through pot experiments with 28 days of lettuce growth. The lettuce grown in the INPBC amended soils increased by more than 100% and the concentrations of inorganic elements (Cu, Ni, Zn) decreased by more than 40%. As, Cd and Pb were not transferred properly from the soils to the lettuce biomass. The bioavailability of arsenic and heavy metals in the INPBC amended soils were decreased by 26%~50%. It seems that the major mechanisms of stabilization were arsenic adsorption on iron oxides, heavy metal precipitation by soil pH increasing and heavy metal adsorption on organic matter. These results revealed that the lower bioavailability of the inorganic pollutants in the soils stabilized using INPBC induced lower transfer to the lettuce. Thus, INPBC could be used as an amendment material for the stabilization of farmland soils contaminated by arsenic and heavy metals. However, a pre-review of the chemical properties of the amended soil must be performed prior to applying INPBC in farmland soil because the concentration of the nutrients in the soil such as available phosphates and exchangeable cations (Ca, Mg, K) could be decreased due to adsorption on the surface of the iron oxides and organic matter.

Bioremediation Options for Nuclear Sites a Review of an Emerging Technology

  • Robinson, Callum;White-Pettigrew, Matthew;Shaw, Samuel;Morris, Katherine;Graham, James;Lloyd, Jonathan R.
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.307-319
    • /
    • 2022
  • 60+ Years of nuclear power generation has led to a significant legacy of radioactively contaminated land at a number of nuclear licenced "mega sites" around the world. The safe management and remediation of these sites is key to ensuring there environmental stewardship in the long term. Bioremediation utilizes a variety of microbially mediated processes such as, enzymatically driven metal reduction or biominerialisation, to sequester radioactive contaminants from the subsurface limiting their migration through the geosphere. Additionally, some of these process can provide environmentally stable sinks for radioactive contaminants, through formation of highly insoluble mineral phases such as calcium phosphates and carbonates, which can incorporate a range of radionuclides into their structure. Bioremediation options have been considered and deployed in preference to conventional remediation techniques at a number of nuclear "mega" sites. Here, we review the applications of bioremediation technologies at three key nuclear licenced sites; Rifle and Hanford, USA and Sellafield, UK, in the remediation of radioactively contaminated land.

Vascular rinsing and chilling carcasses improves meat quality and food safety: a review

  • Koeun, Hwang;James R., Claus;Jong Youn, Jeong;Young-Hwa, Hwang;Seon-Tea, Joo
    • Journal of Animal Science and Technology
    • /
    • v.64 no.3
    • /
    • pp.397-408
    • /
    • 2022
  • Rinse & Chill® technology (RCT) entails rinsing the vasculature using a chilled isotonic solution (3℃; 98.5% water and a blend of dextrose, maltose, and sodium phosphates) to rinse out the residual blood from the carcass. Infusion of pre-chilled solutions into intact animal carcasses immediately upon exsanguination is advantageous in terms of lowering the internal muscle temperature and accelerating chilling. This technology is primarily used for purposes of effective blood removal, favorable pH decline, and efficient carcass chilling, all of which improve meat quality and safety. Although RCT solution contains some substrates, the pre-rigor muscle is still physiologically active at the time of early postmortem and vascular rinsing. Consequently, these substrates are fully metabolized by the muscle, leaving no detectable residues in meat. The technology has been commercially approved and in continuous use since 2000 in the United States and since 1997 in Australia. As of January 2022, 23 plants have implemented RCT among the 5 countries (Australia, US, Canada, New Zealand, and Japan) that have evaluated and approved RCT. All plants are operating under sound Sanitation Standard Operation Procedures (SSOP) and a sound Hazard Analysis Critical Control Point (HACCP) program. No food safety issues have been reported associated with the use of this technology. RCT has been adapted by the meat industry to improve product safety and meat quality while improving economic performance. Therefore, this review summarizes highlights of how RCT technically works on a variety of animal types (beef, bison, pork, and lamb).

Recent strategies for improving the quality of meat products

  • Seonmin Lee;Kyung Jo;Seul-Ki-Chan Jeong;Hayeon Jeon;Yun-Sang Choi;Samooel Jung
    • Journal of Animal Science and Technology
    • /
    • v.65 no.5
    • /
    • pp.895-911
    • /
    • 2023
  • Processed meat products play a vital role in our daily dietary intake due to their rich protein content and the inherent convenience they offer. However, they often contain synthetic additives and ingredients that may pose health risks when taken excessively. This review explores strategies to improve meat product quality, focusing on three key approaches: substituting synthetic additives, reducing the ingredients potentially harmful when overconsumed like salt and animal fat, and boosting nutritional value. To replace synthetic additives, natural sources like celery and beet powders, as well as atmospheric cold plasma treatment, have been considered. However, for phosphates, the use of organic alternatives is limited due to the low phosphate content in natural substances. Thus, dietary fiber has been used to replicate phosphate functions by enhancing water retention and emulsion stability in meat products. Reducing the excessive salt and animal fat has garnered attention. Plant polysaccharides interact with water, fat, and proteins, improving gel formation and water retention, and enabling the development of low-salt and low-fat products. Replacing saturated fats with vegetable oils is also an option, but it requires techniques like Pickering emulsion or encapsulation to maintain product quality. These strategies aim to reduce or replace synthetic additives and ingredients that can potentially harm health. Dietary fiber offers numerous health benefits, including gut health improvement, calorie reduction, and blood glucose and lipid level regulation. Natural plant extracts not only enhance oxidative stability but also reduce potential carcinogens as antioxidants. Controlling protein and lipid bioavailability is also considered, especially for specific consumer groups like infants, the elderly, and individuals engaged in physical training with dietary management. Future research should explore the full potential of dietary fiber, encompassing synthetic additive substitution, salt and animal fat reduction, and nutritional enhancement. Additionally, optimal sources and dosages of polysaccharides should be determined, considering their distinct properties in interactions with water, proteins, and fats. This holistic approach holds promise for improving meat product quality with minimal processing.

Synthesis and Investigation of LiVPO4O1-xFxvia Control of the Fluorine Content for Cathode of Lithium-ion Batteries (플루오린 함량 제어를 통한 LiVPO4O1-xFx 합성 및 리튬 이차전지 양극소재 전기화학 특성 분석)

  • Minkyung Kim;Dong-hee Lee;Changyu Yeo;Sooyeon Choi;Chiwon Choi;Hyunmin Yoon
    • Journal of Powder Materials
    • /
    • v.30 no.6
    • /
    • pp.516-520
    • /
    • 2023
  • Highly safe lithium-ion batteries (LIBs) are required for large-scale applications such as electrical vehicles and energy storage systems. A highly stable cathode is essential for the development of safe LIBs. LiFePO4 is one of the most stable cathodes because of its stable structure and strong bonding between P and O. However, it has a lower energy density than lithium transition metal oxides. To investigate the high energy density of phosphate materials, vanadium phosphates were investigated. Vanadium enables multiple redox reactions as well as high redox potentials. LiVPO4O has two redox reactions (V5+/V4+/V3+) but low electrochemical activity. In this study, LiVPO4O is doped with fluorine to improve its electrochemical activity and increase its operational redox potential. With increasing fluorine content in LiVPO4O1-xFx, the local vanadium structure changed as the vanadium oxidation state changed. In addition, the operating potential increased with increasing fluorine content. Thus, it was confirmed that fluorine doping leads to a strong inductive effect and high operating voltage, which helps improve the energy density of the cathode materials.

Ecological health assessment of Mae Kha Canal, Chiang Mai Province, Thailand in 2023

  • Onalenna Manene;Nick Deadman;Chotiwut Techakijvej;Songyot Kullasoot;Pitak Sapewisut;Nattawut Sareein;Chitchol Phalaraksh
    • Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.110-119
    • /
    • 2024
  • Background: The Mae Kha Canal is one of Chiang Mai's most important waterways. It supports local agriculture, irrigation, and transportation as well as provides stormwater drainage to prevent floods. Due to the unregulated rapid urbanization of the city and lack of efficient waste and wastewater management systems over the past few decades, the canal has become heavily polluted. This study aimed to evaluate the water quality of Mae Kha canal through assessment of the physico-chemical water quality and coliform bacteria. Moreover, benthic macroinvertebrates were samples and assessed using the Biological Monitoring Working Party (BMWPThai) and Average Score Per Taxon (ASPTThai) as biological indices. Results: The physico-chemical showed low dissolved oxygen levels, high levels of ammonia and phosphates, and elevated levels of biochemical oxygen demand, indicating that the water quality had significantly deteriorated. The canal was found to be heavily polluted, with most sites falling into the polluted to very heavily polluted. Coliform bacteria analysis revealed alarmingly high levels of total coliform bacteria and fecal coliform bacteria in the canal. The BMWPThai and ASPTThai scores indicated poor to very poor water quality. Conclusions: The physico-chemical and coliform bacteria indicated that the water quality of the Mae Kha canal had significantly deteriorated. The biological indices also indicated the poor to very poor water quality. This study underscores the urgent need for comprehensive remediation efforts, emphasizing strategic planning, investment, and community engagement to revive the canal's ecological health and water quality.