Browse > Article
http://dx.doi.org/10.7733/jnfcwt.2022.026

Bioremediation Options for Nuclear Sites a Review of an Emerging Technology  

Robinson, Callum (Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester)
White-Pettigrew, Matthew (Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester)
Shaw, Samuel (Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester)
Morris, Katherine (Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester)
Graham, James (National Nuclear Laboratory, Central Laboratory)
Lloyd, Jonathan R. (Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester)
Publication Information
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT) / v.20, no.3, 2022 , pp. 307-319 More about this Journal
Abstract
60+ Years of nuclear power generation has led to a significant legacy of radioactively contaminated land at a number of nuclear licenced "mega sites" around the world. The safe management and remediation of these sites is key to ensuring there environmental stewardship in the long term. Bioremediation utilizes a variety of microbially mediated processes such as, enzymatically driven metal reduction or biominerialisation, to sequester radioactive contaminants from the subsurface limiting their migration through the geosphere. Additionally, some of these process can provide environmentally stable sinks for radioactive contaminants, through formation of highly insoluble mineral phases such as calcium phosphates and carbonates, which can incorporate a range of radionuclides into their structure. Bioremediation options have been considered and deployed in preference to conventional remediation techniques at a number of nuclear "mega" sites. Here, we review the applications of bioremediation technologies at three key nuclear licenced sites; Rifle and Hanford, USA and Sellafield, UK, in the remediation of radioactively contaminated land.
Keywords
Bioremediation; Remediation; Geomicrobiology; Nuclear Sites; Environmental;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sellafield Ltd. April 1 2015. "Groundwater Monitoring at Sellafield: Annual Data Review 2016." GOV UK. Accessed Apr. 4 2022. Available from: https://www.gov.uk/government/publications/groundwater-monitoring-at-sellafield-2014-data-review.
2 Sellafield Ltd. June 25 2021. "Leak Prevention or Minimisation." Game Changers-Challenges. Accessed Apr. 4 2022. Available from: https://www.gamech-angers.technology/challenge/Leak_prevention_or_minimisation.
3 L. Newsome, K. Morris, D. Trivedi, N. Atherton, and J.R. Lloyd, "Microbial Reduction of Uranium(VI) in Sediments of Different Lithologies Collected From Sellafield", Appl. Geochemistry, 51, 55-64 (2014).   DOI
4 I.T. Burke, C. Boothman, J.R. Lloyd, R.J.G. Mortimer, F.R. Livens, and K. Morris, "Effects of Progressive Anoxia on the Solubility of Technetium in Sediments", Environ. Sci. Technol., 39(11), 4109-4116 (2005).   DOI
5 W.H. Ko and F.K. Hora, "Production of Phospholipases by Soil Microorganisms", Soil Sci., 110(5), 355-358 (1970).   DOI
6 L.E. Macaskie, R.M. Empson, A.K. Cheetham, C.P. Grey, and A.J. Skarnulis, "Uranium Bioaccumulation by a Citrobacter sp. as a Result of Enzymically Mediated Growth of Polycrystalline HUO2PO4", Science, 257(5071), 782-784 (1992).   DOI
7 W. Gao and A.J. Francis, "Reduction of Uranium(VI) to Uranium(IV) by Clostridia", Appl. Environ. Microbiol., 74(14), 4580-4584 (2008).   DOI
8 A. Cleary, J.R. Lloyd, L. Newsome, S. Shaw, C. Boothman, G. Boshoff, N. Atherton, and K. Morris, "Bioremediation of Strontium and Technetium Contaminated Groundwater Using Glycerol Phosphate", Chem. Geol., 509, 213-222 (2019).   DOI
9 C.L. Thorpe, J.R. Lloyd, G.T.W. Law, I.T. Burke, S. Shaw, N.D. Bryan, and K. Morris, "Strontium Sorption and Precipitation Behaviour During Bioreduction in Nitrate Impacted Sediments", Chem. Geol., 306-307, 114-122 (2012).   DOI
10 G.M. Gadd, "Biosorption: Critical Review of Scientific Rationale, Environmental Importance and Significance for Pollution Treatment", J. Chem. Technol. Biotechnol., 84(1), 13-28 (2009).   DOI
11 S.V. Avery, "Caesium Accumulation by Microorganisms: Uptake Mechanisms, Cation Competition, Compartmentalization and Toxicity", J. Ind. Microbiol., 14(2), 76-84 (1995).   DOI
12 S.V. Avery, "Microbial Interactions With Caesium-Implications for Biotechnology", J. Chem. Technol. Biotechnol., 62(1), 3-16 (1995).   DOI
13 K.H. Williams, J.R. Bargar, J.R. Lloyd, and D.R. Lovley, "Bioremediation of Uranium-Contaminated Groundwater: A Systems Approach to Subsurface Biogeochemistry", Curr. Opin. Biotechnol., 24(3), 489-497 (2013).   DOI
14 K.M. Campbell, R.K. Kukkadapu, N.P. Qafoku, A.D. Peacock, E. Lesher, K.H. Williams, J.R. Bargar, M.J. Wilkins, L. Figueroa, J. Ranville, J.A. Davis, and P.E. Long, "Geochemical, Mineralogical and Microbiological Characteristics of Sediment From a Naturally Reduced Zone in a Uranium-Contaminated Aquifer", Appl. Geochemistry, 27(8), 1499-1511 (2012).   DOI
15 V.R. Vermeul, B.G. Fritz, J.S. Fruchter, J.E. Szecsody, and M.D. Williams. 100-NR-2 Apatite Treatability Test: High-Concentration Calcium-Citrate- Phosphate Solution Injection for In Situ Strontium-90 Immobilization, Pacific Northwest National Laboratory Technical Report, PNNL-19572 (2010).
16 J.F. Rakovan and J. M. Hughes, "Strontium in the Apatite Structure: Strontian Fluorapatite and Belovite- (Ce)", Can. Mineral., 38(4), 839-845 (2000).   DOI
17 V.R. Vermeul, J.E. Szecsody, B.G. Fritz, M.D. Williams, R.C. Moore, and J.S. Fruchter, "An Injectable Apatite Permeable Reactive Barrier for In Situ 90Sr Immobilization", Groundw. Monit. Remediat., 34(2), 28-41 (2014).
18 J.F. Rakovan and J.D. Pasteris, "A Technological Gem: Materials, Medical, and Environmental Mineralogy of Apatite", Elements, 11(3), 195-200 (2015).   DOI
19 D.M. Wellman, J.P. Icenhower, and A.T. Owen, "Comparative Analysis of Soluble Phosphate Amendments for the Remediation of Heavy Metal Contaminants: Effect on Sediment Hydraulic Conductivity", Environ. Chem., 3(3), 219224 (2006).
20 S.H. Wallace, S. Shaw, K. Morris, J.S. Small, A.J. Fuller, and I.T. Burke, "Effect of Groundwater pH and Ionic Strength on Strontium Sorption in Aquifer Sediments: Implications for 90Sr Mobility at Contaminated Nuclear Sites", Appl. Geochemistry, 27(8), 1482-1491 (2012).   DOI
21 R.C. Moore, C. Sanchez, K. Holt, P. Zhang, H. Xu, and G.R. Choppin, "Formation of Hydroxyapatite in Soils Using Calcium Citrate and Sodium Phosphate for Control of Strontium Migration", Radiochim. Acta, 92(9-11), 719-723 (2004).   DOI
22 L.E. Macaskie, "The Application of Biotechnology to the Treatment of Wastes Produced From the Nuclear Fuel Cycle: Biodegradation and Bioaccumulation as a Means of Treating Radionuclide-Containing Streams", Crit. Rev. Biotechnol., 11(1), 41-112 (1991).   DOI
23 J.E. Szecsody, M.L. Rockhold, M. Oostrom, R.C. Moore, C.A. Burns, M.D. Williams, L. Zhong, J.S. Fruchter, J.P. McKinley, V.R. Vermeul, M.A. Covert, T.W. Wietsma, A.T. Breshears, and B.J. Garcia. Sequestration of Sr-90 Subsurface Contamination in the Hanford 100-N Area by Surface Infiltration of a CaCitrate-Phosphate Solution, Pacific Northwest National Laboratory Repport, PNNL-18303 (2009).
24 R.D. Shannon and C.T. Prewitt, "Effective Ionic Radii in Oxides and Fluorides", Acta Crystallogr. B. Struct. Sci. Cryst. Eng. Mater., B25, 925-946 (1969).
25 Sellafield Ltd. July 31 2017. "Corporate Strategy." GOV UK. Accessed Apr. 4 2022. Available from: https://www.gov.uk/government/publications/sellafield-ltd-corporate-strategy.
26 L. Newsome, K. Morris, D. Trivedi, A. Bewsher, and J.R. Lloyd, "Biostimulation by Glycerol Phosphate to Precipitate Recalcitrant Uranium(IV) Phosphate", Environ. Sci. Technol., 49(18), 11070-11078 (2015).   DOI
27 L. Newsome, A. Cleary, K. Morris, and J.R. Lloyd, "Long-Term Immobilization of Technetium via Bioremediation With Slow-Release Substrates", Environ. Sci. Technol., 51(3), 1595-1604 (2017).   DOI
28 Y. Fujita, G.D. Redden, J.C. Ingram, M.M. Cortez, F.G. Ferris, and R.W. Smith, "Strontium Incorporation Into Calcite Generated by Bacterial Ureolysis", Geochim. Cosmochim. Acta, 68(15), 3261-3270 (2004).   DOI
29 C.L. Thorpe, C. Boothman, J.R. Lloyd, G.T.W. Law, N.D. Bryan, N. Atherton, F.R. Livens, and K. Morris, "The Interactions of Strontium and Technetium With Fe(II) Bearing Biominerals: Implications for Bioremediation of Radioactively Contaminated Land", Appl. Geochemistry, 40, 135-143 (2014).   DOI
30 C.L. Thorpe, G.T.W. Law, C. Boothman, J.R. Lloyd, I.T. Burke, and K. Morris, "The Synergistic Effects of High Nitrate Concentrations on Sediment Bioreduction", Geomicrobiol. J., 29(5), 484-493 (2012).   DOI
31 C.L. Thorpe, K. Morris, J.R. Lloyd, M.A. Denecke, K.A. Law, K. Dardenne, C. Boothman, P. Bots, and G.T.W. Law, "Neptunium and Manganese Biocycling in Nuclear Legacy Sediment Systems", Appl. Geochemistry, 63, 303-309 (2015).   DOI
32 C.I. Pearce, R.C. Moore, J.W. Morad, R.M. Asmussen, S. Chatterjee, A.R. Lawter, T.G. Levitskaia, J.J. Neeway, N.P. Qafoku, M.J. Rigali, S.A. Saslow, J.E. Szecsody, P.K. Thallapally, G. Wang, and V.L. Freedman, "Technetium Immobilization by Materials Through Sorption and Redox-Driven Processes: A Literature Review", Sci. Total Environ., 716, 132849 (2020).   DOI
33 C.L. Thorpe, G.T.W. Law, J.R. Lloyd, H.A. Williams, N. Atherton, and K. Morris, "Quantifying Technetium and Strontium Bioremediation Potential in Flowing Sediment Columns", Environ. Sci. Technol., 51(21), 12104-12113 (2017).   DOI
34 C.L. Thorpe, J.R. Lloyd, G.T.W. Law, H.A. Williams, N. Atherton, J.H. Cruickshank, and K. Morris, "Retention of 99mTc at Ultra-trace Levels in Flowing Column Experiments-Insights Into Bioreduction and Biomineralization for Remediation at Nuclear Facilities", Geomicrobiol. J., 33(3-4), 199-205 (2016).   DOI
35 J.B. Duncan, "Reduction and Stabilization (Immobilization) of Pertechnetate to an Immobile Reduced Technetium Species Using Tin (II) Apatite", Sep. Sci. Technol. J., RPP-53855 (2012).
36 W. Siuda and R. J. Chrost, "Utilization of Selected Dissolved Organic Phosphorus Compounds by Bacteria in Lake Water Under non-Limiting Orthophosphate Conditions", Pol. J. Environ. Stud., 10(6), 475-483 (2001).
37 R.E.H. Sims, H.H. Rogner, and K. Gregory, "Carbon Emission and Mitigation Cost Comparisons Between Fossil Fuel, Nuclear and Renewable Energy Resources for Electricity Generation", Energy Policy, 31(13), 1315-1326 (2003).   DOI
38 B. Gu, D.B. Watson, D.H. Phillips, and L. Liang, "Biogeochemical, Mineralogical, and Hydrological Characteristics of an Iron Reacitve Barrier Used for Treatment of Uranium and Nitrate", in Handbook of Groundwater Remediation Using Permeable Reactive Barriers, D. Naftz, S.J. Morrison, C.C. Fuller, J.A. Davis, eds., 305-342, Elsevier, Cambridge (2002).
39 L. Newsome, K. Morris, and J.R. Lloyd, "The Biogeochemistry and Bioremediation of Uranium and Other Priority Radionuclides", Chem. Geol., 363, 164-184 (2014).   DOI
40 D.R. Brookshaw, R.A.D. Pattrick, P. Bots, G.T.W. Law, J.R. Lloyd, J.F.W. Mosselmans, D.J. Vaughan, K. Dardenne, and K. Morris, "Redox Interactions of Tc(VII), U(VI), and Np(V) With Microbially Reduced Biotite and Chlorite", Environ. Sci. Technol., 49(22), 13139-13148 (2015).   DOI
41 J.R. Lloyd, R.T. Anderson, and L.E. Macaskie, "Bioremediation of Metals and Radionuclides", in Bioremediation: Applied Microbial Solutions for Real-World Environmental Cleanup, 2nd ed., R.M. Atlas and J.C. Philp, eds., 293-317, ASM Press, Washington (2014).
42 R.T. Anderson, H.A. Vrionis, I. Ortiz-Bernad, C.T. Resch, P.E. Long, R. Dayvault, K. Karp, S. Marutzky, D.R. Metzler, A. Peacock, D.C. White, M. Lowe, and D.R. Lovley, "Stimulating the In Situ Activity of Geobacter Species to Remove Uranium From the Groundwater of a Uranium-Contaminated Aquifer", Appl. Environ. Microbiol., 69(10), 5884-5891 (2003).   DOI
43 R.E. Wildung, S.W. Li, C.J. Murray, K.M. Krupka, Y. Xie, N.J. Hess, and E.E. Roden, "Technetium Reduction in Sediments of a Shallow Aquifer Exhibiting Dissimilatory Iron Reduction Potential", FEMS Microbiol. Ecol., 49(1), 151-162 (2004).   DOI
44 L. Newsome, K. Morris, S. Shaw, D. Trivedi, and J.R. Lloyd, "The Stability of Microbially Reduced U(IV); Impact of Residual Electron Donor and Sediment Ageing", Chem. Geol., 409, 125-135 (2015).   DOI
45 T.J. Dichristina, "New Insights Into the Molecular Mechanism of Microbial Metal Respiration", Geochim. Cosmochim. Acta Suppl., 69(10), A670 (2005).
46 K.T. Finneran, R.T. Anderson, K.P. Nevin, and D.R. Lovley, "Potential for Bioremediation of UraniumContaminated Aquifers With Microbial U (VI) Reduction", Soil Sediment Contam. An Int. J., 11(3), 339-357 (2002).   DOI
47 G.T.W. Law, A. Geissler, J.R. Lloyd, F.R. Livens, C. Boothman, J.D.C. Begg, M.A. Denecke, J. Rothe, K. Dardenne, I.T. Burke, J.M. Charnock, and K. Morris, "Geomicrobiological Redox Cycling of the Transuranic Element Neptunium", Environ. Sci. Technol., 44(23), 8924-8929 (2010).   DOI
48 J.M. McBeth, G. Lear, J.R. Lloyd, F.R. Livens, K. Morris, and I.T. Burke, "Technetium Reduction and Reoxidation in Aquifer Sediments", Geomicrobiol. J., 24(3-4), 189-197 (2007).   DOI
49 D.E. Latta, M.I. Boyanov, K.M. Kemner, E.J. O'Loughlin, and M.M. Scherer, "Abiotic Reduction of Uranium by Fe(II) in Soil", Appl. Geochemistry, 27(8), 15121524 (2012).
50 J.E. Szecsody, C.A. Burns, R.C. Moore, J.S. Fruchter, V.R. Vermeul, M.D. Williams, D.C. Girvin, J.P. Mckinley, M.J. Truex, and J.L. Phillips. Hanford 100-N Area Apatite Emplacement: Laboratory Results of Ca-Citrate-PO4 Solution Injection and Sr-90 Immobilization in 100-N Sediments, Pacific Northwest National Laboratory Technical Report, PNNL-16891 (2007).
51 J.M. Zachara, P.E. Long, J. Bargar, J.A. Davis, P. Fox, J.K. Fredrickson, M.D. Freshley, A.E. Konopka, C. Liu, J.P. McKinley, M.L. Rockhold, K.H. Williams, and S.B. Yabusaki, "Persistence of Uranium Groundwater Plumes: Contrasting Mechanisms at two DOE Sites in the Groundwater-River Interaction Zone", J. Contam. Hydrol., 147, 45-72 (2013).   DOI
52 S.P. Hyun, J.A. Davis, K. Sun, and K.F. Hayes, "Uranium (VI) Reduction by Iron(II) Monosulfide Mackinawite", Environ. Sci. Technol., 46(6), 3369-3376 (2012).   DOI
53 K.H. Williams, P.E. Long, J.A. Davis, M.J. Wilkins, A.L. N'Guessan, C.I. Steefel, L. Yang, D. Newcomer, F.A. Spane, L.J. Kerkhof, L. Mcguinness, R. Dayvault, and D.R. Lovley, "Acetate Availability and its Influence on Sustainable Bioremediation of Uranium-Contaminated Groundwater", Geomicrobiol. J., 28(5-6), 519-539 (2011).   DOI
54 L.T. Townsend, S. Shaw, N.E.R. Ofili, N. Kaltsoyannis, A.S. Walton, J.F.W. Mosselmans, T.S. Neill, J.R. Lloyd, S. Heath, R. Hibberd, and K. Morris, "Formation of a U(VI)-Persulfide Complex During Environmentally Relevant Sulfidation of Iron (Oxyhydr)Oxides", Environ. Sci. Technol., 54(1), 129-136 (2019).
55 J.R. Bargar, K.H. Williams, K.M. Campbell, P.E. Long, J.E. Stubbs, E.I. Suvorova, J.S. Lezama-Pacheco, D.S. Alessi, M. Stylo, S.M. Webb, J.A. Davis, D.E. Giammar, L.Y. Blue, and R. Bernier-Latmani, "Uranium Redox Transition Pathways in Acetate-Amended Sediments", Proc. Natl. Acad. Sci. U.S.A., 110(12), 4506- 4511 (2013).   DOI
56 Y.Bi, S.P. Hyun, R.K. Kukkadapu, and K.F. Hayes, "Oxidative Dissolution of UO2 in a Simulated Groundwater Containing Synthetic Nanocrystalline Mackinawite", Geochim. Cosmochim. Acta, 102, 175-190 (2013).   DOI
57 D.A. Neitzel, A.L. Bunn, S.D. Cannon, J.P. Duncan, R.A. Fowler, B.G. Fritz, D.W. Harvey, P.L. Hendrickson, D.J. Hoitink, D.G. Horton, G.V. Last, T.M. Poston, E.L. Prendergast-Kennedy, S.P. Reidel, A.C. Rohay, M.R. Sackschewsky, M.J. Scott, and P.D. Thorne. Hanford Site National Environmental Policy Act (NEPA) Characterization Report, Revision 17, Pacific Northwest National Laboratory Repport, PNNL6415 (2005).
58 R.E. Gephart, "A Short History of Waste Management at the Hanford Site", Phys. Chem. Earth, 35(6-8), 298- 306 (2010).   DOI